
Eric Eve 16-Mar-07

TADS 3.0.16
DYNAMIC CHARACTERS QUICK REFERENCE

ActorState
· stateDesc - this is a message that's added to the actor's ba-

sic description (the "npcDesc" property in the Actor ob-
ject). Most actors will have a permanent description that
never changes - a basic description of their physical ap-
pearance - along with some extra information that de-
scribes what they're doing right now. The stateDesc lets
you add this extra state-dependent part.

· specialDesc - displays the actor's in-room description. This
is the description displayed in the room description (for
example, when entering the room, or in response to a
LOOK command). By default, we'll invoke the actor's ac-
torHereDesc method.

· distantSpecialDesc - the special description of the actor
from a distance.

· remoteSpecialDesc(actor) - the special description of the
actor from a remote location.

· obeyCommand(issuingActor, action) - determine if we
should obey the given action. By default, we'll simply
refuse all commands and display any matching Command-
Topic.

· takeTurn() - this is called once per turn. This allows the
actor to carry out scripted behaviour appropriate to the cur-
rent state. This does nothing by default.

· afterAction() - this method can contain code to be run af-
ter the PC performs an action in the NPC’s scope.

 beforeAction() - this method can contain code to be run
before the PC performs an action in the NPC’s scope; the
action can be vetoed with an exit command.

 beforeTravel(traveler, connector)
· afterTravel(traveler, connector) - these methods are in-

voked just before and after a traveler travels via traveler-
TravelTo(); beforeTravel() is called on each object
connected by containment to the traveler in its old location,
and afterTravel() is called on each object connected by
containment in the new location. These notifications are
more precise than using beforeAction() and afterAction()
with the TravelVia pseudo-action, because these actions
are only called when travel is actually occurring. TravelVia
will fire notifications even when travel isn't actually possi-
ble. A beforeTravel() method can veto the travel action us-
ing "exit". The notification is invoked before the travel is
actually performed, and even before a description of the
departure is produced.

· isInitState - if set to true, then the then the library will au-

tomatically set the corresponding actor's curState property
to point to that ActorState during pre-initialization.

· arrivingTurn() - When group travel is performed using
the AccompanyingInTravelState class, this is essentially
called in lieu of the regular takeTurn() method on the state
that is coming into effect after the group travel.

 autoSuggest - set to nil to disable automatic topic invento-
ry listing on TALK TO commands.

HermitActorState
· noResponse - explain why actor in this state is too busy or

otherwise unresponsive.

Accompanying State
· accompanyTravel(leadActor, conn) { return leadActor

== gPlayerChar; } to make NPC follow player.
· getAccompanyingTravelState(leadActor, conn) { re-

turn new WhoeverTravelState(location, leadActor, self); }

AccompanyingInTravelState
· sayDeparting(conn) - the ‘before’ message
· specialDesc - the ‘after’ message

ConversationReadyState
· inConvState - our in-conversation state object. This speci-

fies the state to switch to when a conversation begins. This
should be set to an InConversationState object. For your
convenience, rather than defining this property explicitly,
you can put the ConversationReadyState "inside" its corre-
sponding InConversationState, using the '+' syntax. If a
ConversationReadyState is nested within an InConversa-
tionState object, the library will automatically initialize the
former's inConvState property to point to the containing
state.

· Greeting Protocols - use HelloTopic, ImpHelloTopic,
ByeTopic, ActorByeTopic, BoredByeTopic, LeaveBye-
Topic and ImpByeTopic, located in the Conversation-
ReadyState. The ImpXXXTopic forms are for implicit
greeting or parting; if absent, the XXXTopic entry will be
used instead. Use ActorByeTopic, BoredByeTopic and
LeaveByeTopic for particular types of implied parting.

 InConversationState
· attentionSpan - this is an integer giving the number of

turns the actor should wait before giving up on the conver-
sation. The default is 4. If the other character doesn't talk to
our NPC for this many turns, we'll automatically terminate
the conversation, switching to our next state. If the NPC’s
attention span is unlimited, set this to nil.

· nextState - this is an ActorState object, which should usu-
ally be of the ConversationReadyState subclass, which fol-
lows the conversation's termination. When we terminate
the conversation, we'll switch to this state. You don't have
to override this; if you don't, we'll remember the state that
the actor was in just before the conversation, and switch
back to that state when the conversation ends.

Actor
· initiateConversation(state, node) - see ConvNode
· initiateTopic(obj) - used with InitiateTopic (q.v.)

TopicEntry Subclasses
· AskTopic answers an ASK ABOUT question;
· TellTopic responds to a TELL ABOUT command;
· AskTellTopic answers either an ASK ABOUT or TELL

ABOUT command;
· GiveTopic responds to a GIVE TO command;
· ShowTopic responds to a SHOW TO command;
 GiveShowTopic responds to either a GIVE TO or SHOW

TO command; AskTellGiveShowTopic.
· AskForTopic responds to an ASK FOR command
 AskAboutForTopic, AskTellAboutForTopic

· YesTopic responds to a YES command.
· NoTopic responds to a NO command.
 ByeTopic & ImpByeTopic & HelloGoodbyeTopic &

ActorByeTopic & BoredByeTopic & LeaveByeTopic
· HelloTopic & ImpHelloTopic - use these eight on a Con-

versationReadyState to provide greeting protocols
(although you can also include HelloTopic and ByeTopic
on other ActorStates to handle these commands.)

· CommandTopic - provide a response to a command is-
sued to the actor, e.g. “Bob, read the book” would activate
CommandTopic @ReadAction.

· InitiateTopic responds to Actor.initiateTopic(obj)

TopicEntry Methods & Properties
· matchObj - My matching simulation object or objects.

This can be either a single object or a list of objects.
· getActor() - The Actor object to whom this topic ultimate-

ly belongs
· isActive - the condition that determines when the topic en-

try should become active. We'll never show the topic's
response when isActive returns nil. Allows conditional re-
sponsibilities, especially in conjunction with AltTopic and
TopicGroups.

· isConversational - true by default, if nil does not trigger
greeting protocols.

· matchScore - the match strength score. By default, we'll
use a score of 100, which is just an arbitrary base score.

Eric Eve 16-Mar-07

· topicResponse - Our response. This is displayed when
we're the topic entry selected to handle an ASK or TELL.
Each topic entry must overridethis to show our response
text (or, alternatively, an entry can override
handleTopic(fromActor, topic) so that it doesn't call this
property)

· matchPattern - match a regular expression pattern (as an
alternative to matchObj).

TopicEntry Templates
· TopicEntry template +matchScore? @matchObj |

[matchObj] | 'matchPattern' "topicResponse" | [eventList]
?;

· TopicEntry template +matchScore? @matchObj |
[matchObj] | 'matchPattern' [firstEvents] [eventList];

· TopicEntry template +matchScore? @matchObj |
[matchObj] 'matchPattern' "topicResponse" | [eventList] ?;

· TopicEntry template +matchScore? @matchObj |
[matchObj] 'matchPattern' [firstEvents] [eventList];

· MiscTopic template "topicResponse" | [eventList];
· MiscTopic template [firstEvents] [eventList];

DefaultTopics
· DefaultAskTopic, DefaultTellTopic, DefaultAskTellTopic,

DefaultGiveTopic, DefaultShowTopic, DefaultGiveShow-
Topic, DefaultAskForTopic, DefaultInitiateTopic, Default-
CommandTopic, DefaultAnyTopic

AltTopic
· isActive - the condition that must be true for this topic to

be used instead of the TopicEntry within which it is direct-
ly nested.

TopicGroup (nest inside the appropriate ActorState; nest re-
lated TopicEntry or TopicGroup objects within the Topic-
Group)

· isActive - the condition that allows this topic group to be
active.

TopicInventory
There are three ways the topic inventory can be displayed:

· in response to a TOPICS command from the player;
· in response to a TALK TO command from the player;
· any other time the game (or library) thinks it's a good idea.

SuggestedTopic Subclasses:

· SuggestedAskTopic, SuggestedTellTopic, Suggested-
ShowTopic, SuggestedGiveTopic, SuggestedYesTopic,
SuggestedAskForTopic and SuggestedNoTopic.

Properties
· name - this is the name that will be shown in the suggested

topic list. It should be given so that it can be substituted
into a sentence after "ask about" (or the appropriate varia-
tion for the other types), so it should usually include "the"
if appropriate.

ConvNode (Nest directly inside Actor; nest topic entries in
ConvNode)

· + ConvNode 'name'
· npcGreetingMsg - use this to display a message when the

NPC initiates a conversation, generally via a call to
Actor.initiateConversation(ActorState, ‘name’).

· npcGreetingList - use as an alternative to npcGreet-
ingMsg in cases where the ConvNode may be initiated
more than once.

· npcContinueMsg or npcContinueList - the InConversa-
tionState class automatically displays the current ConvN-
ode's continuation message (using either npcContinueMsg
or npcContinueList, as appropriate) on each turn on which
the ConvNode is active, and the player didn't address a
conversational command to the NPC on the same turn.

· endConversation(actor, reason) - Instances can override
this for special behaviour on terminating a conversation.

· canEndConversation(actor, reason) - lets a node prevent
a conversation ending, by returning nil or blockEndConv;
reason can be endConvBye, endConvTravel, or endCon-
vBoredom.

· isSticky - if this flag is true (it’s nil by default) then this
conversation node remains current until a response explic-
itly changes the node.

SpecialTopic (only for use in ConvNode)
· example: ++ SpecialTopic 'call him a liar' ['call', 'bob',

'him', 'a', 'liar']
 "<q>You're so full of crap, Bob [...] " ;

Tags (for use in TopicEntry & SpecialTopic object text re-
sponse output)

· <.convode name> - switches the NPC that issued the re-
sponse to the named conversation node. You can also set
the tree position explicitly by calling the NPC's
setConvNode(name) method, passing the new conversation
node name as the parameter.

· <.convstay> - - keep the responding actor in the same con-
versation node as it was in at the start of the current re-
sponse

· <.topics> -schedule a topic inventory for the end of the
turn.

· <.reveal key> - add 'key' to the knowledge token lookup
table. The 'key' is an arbitrary string, which we can look
up in the table to determine if the key has even been re-
vealed. You can refer to that lookup table using
gRevealed('key'), which returns true if the 'key' value has
been revealed using the <.reveal> tag, nil if not. Use the
macro gReveal('key') to explicitly add the key to the table
of revealed keys outside text output.

EventList Classes (use as mix-ins with TopicEntry objects)
· StopEventtList, RandomEventList, ShuffledEventList,

SyncEventList, CyclicEventList, ExternalEventList

ShuffledEventList
· firstEvents - can be set to a list of strings to show sequen-

tially before starting the shuffled strings.
· shuffleFirst - set this to nil (it's true by default) if you

don't want the list shuffled the first time through

SyncEventList
· masterObject - the EventList object (e.g. bobSweeping.

greetingList) with which this list is to be kept in sync; both
lists will advance their positions in unison.

AgendaItem
· agendaOrder - the ordering of this AgendaItem relative to

other AgendaItems. When two or more AgendaItems are
ready in the same turn, the AgendaItem with the lowest
agendaOrder will be selected for execution.

· initiallyActive - set this to true to make this AgendaItem
active (added to the Actor’s agendaList) at the beginning
of the game.

· isDone - set to true when this AgendaItem is finished with
and can be removed from its actor’s agendaList.

· isReady - set to true when this AgendaItem is ready to be
invoked (note it must also be in its actor’s agendaList for
invocation to occur).

· invokeItem() - Execute this item. This is invoked during
the actor's turn when the item is the first item that's ready
to execute in the actor's agenda list.

· To add this item to the actor’s current agenda, call
addToAgenda(item) on the actor.

	ConvNode

