TADS 3 Tour Guide

TADS 3 TOUR GUIDE

FOR TADS 3.0.16

Eric Eve

Page 1

TADS 3 Tour Guide

CONTENTS

1. 1) (Yo 18 T3 () o TR 8
I R € 1Y o T=Y = 1 I g (o Yo (U o110 o [P RTPRTT 8
1.2, The SAMPIE GAME.......oiiiiiieiie ettt e ettt e e e e a bt e e e ea bt e e e e aate e e e e asteeeeeambeeeesanbeeeesanbeeeesanbeeeesanteeaeaas 9
(I T =T 10T o] = (= TSP TPRRTPRIN 9
L S v= 1y (] o N @o o [T F= 0 g =Y V= 1 o I PR 15
2. (R0 o] g0 E3R= 1 aTe I OZo] a1 (=11 (o] =7 18
D2t IR [01y o Yo [T 1o I 18
P2 © 11 (o [0 o e Yo 1 o I 19
PR T o= 1110 0] [T<To3 (o] ST 20
P S B 1Y o | = 1o [@0]] gT=Tox (o] c 21
P2 TR e To 11 41 @0]] gT=To: (o] SAuERRR TR 22
B TR = 11 (| ST 23
D R 1 01 (=Y =1 o] [TP 23
B < TR o To] 1 o IR 24
2.9, SHAINWAYDOWINoiiiiiiiie ittt e ettt e e e ettt e e e ea bt e e e e aate e e e e amte e e e e ambeeeeeaa b et e e e anbeeeeeanbeeeeeanbeeeeeanteeeeeanreeaeaas 25
2.10. ST =TT = Y 6 o TP 25
211, I N e LA (gAY =TT Vo TP 26
2.12. S T=To (=11 0o Yo] TR 27
2.13. B 118 e] a1 o= ToT= Vo [P RETP 28
2.14. D=3 0 Yo 1 o 29
2.15. I N L ST T= Lo = TR 29
2.16. [R{0T0] 0 0V AXUY (107] o1 [T 1 (o] SR 30
2.17. 10 Yo 30
2.18. 7213 (1 19 T T) 31
2.19. NOTFAVEIMESSATE ...ttt ettt e oo e ettt e e e e e e et e e e e e e e e e s e sbb b e et e e e e e e e nnnrneeeeeeeeaaas 31
2.20. (@ g 1Y == EToT= Lo = PSR 32
2.21. F T (o103 [0 T=] g | D oL PSR 32
2.22. ()TN V=N eTe] 14100 o1 0 T=Ted (o] PRSPPI 34
2.23. L] = TS TCT= T = PR PUPPRRR 34
2.24, 1] 11 o] o0 =T o RN 36
2.25. (Lo Yo g [STST=] U0 o] 1 o 38
2.26. [(0T [T 39
2.27. [10 [0 L= 01 Lo o 39
2.28. (= 0117 o] = PP P PP UPPP T PPPPPPPPPPP 41
2.29. 1 o) 7= | 41
2.30. B =) L= 11 = 7= o 1 TN 42
2.31. PN (O 0T 1 a1<To] (o] ST 42
2.32. L)V (7o) a1 a 1= (o TR 43
2.33. Ro0OM Methods @nd Propertiescooii oot e e e e e e s e e e e e 47
2.33.1. (7070110020700 ¢2Yox (1] o TR 47
2.33.2. [F0T0] 1 a1 =T =TT 48
2.33.3. CaANNOLGOTRAIWAY ...ttt e e ettt e e e e e e et n e e e e e e e e e e snnrnneeeaens 50
2.33.4. CanNOtGOThatWaYINDArK ...t e e e e e e e e e e nen e e eaeas 51
2.33.5. [goTo 0 A= T [W =1V IR 52
2.33.6. =T oY (=Y T g | oo o USSP 52
2.33.7. L1 R0 T0) 1011\ F=1 0101 53
3. [\ g1 0 =1 o] 1= =T 54
1 T I VoY o o] 7=1 o (=X [} {0 o [V T3 1 o) o HH RO 54
T 34 (U] (YRR 55
G TR TR G111 (o] 0 0| =) (U] (=X T TP 55
B T B 1Yo o] =1 (o] o [T 55
BT T D 11 =1 o | T 57
G TG T O [o1 1 01T TP ERTPPPPPPRRN 58
BT A 421001017721 o] [T 59
IR TR O 11 (o] 0 01 [a T 4101771 o] L= 60
G TR T [1 PR PPPPPRRRN 60
3.10. (07020 o] 0= o | SO OTUSPROTRRIN 60
4 LIl L - TP P PP PPPP PP PPTPPPPPPP 62
g IO I o1 o B [a1 o Yo [8 o3 1] RPN 62
O I o1 oo B I L= = 2= T PO 62
O TR Vo ToT= | oY A Lo T (o [P T 63
4.4, iNItDESC & INMSPECIAIDESCcciueiiieiieiiie ettt et e e sttt e e s bttt e e s bb e e e e sbt e e e e anbae e e e ansbeeeeannneeas 65
T o o] o T= 1| =T =10 01\ =T 4TSRS 66

TADS 3 Tour Guide

T =1 o 1= Yo F= 1| LY=o PR 66
N o [T Tor 1| o Y=o [PPSR 69
R T o 10| 1q=T aTo IR Y= o | | ST PPR 70
e T <1 ST 0 oX=Y o F= TS 1 SRR 70
4.10. (== T =1 o] = PR PUPPRRT 71
4.11. o Yo o 72
4.12. (o157 0 a1 o] 1o | N = 0 o= S PP U PP PP PP PP PRI 72
4.13. WEAMADIE 73
5. 1070 01 c= 11T SR 74
L0t I O a1 c= 11 o 1= €T [(oo 18 o3 1] o TSR PSSERR 74
Lo = 10| | (I g o1 (=T PR PPRPRN 74
LR T T |y - Vo - PR PTPRRRRRN 75
Lo = = o 7] o €= 11 1Y PR PPRPPRRN 75
LTS T O o ¢= 1 o1 PR PTPPRPRPRN 76
LI T @0 T= T F= 1 o] (=Y @7 0] o1 =11 1= 77
5.7. notifylnsert & NOLIFYREMOVE ..ottt e e e e e e e e e e e e aanaeeeeaaeeeanns 77
LS T W0 Tl = o] (= 0o 1) =1 1= SR SSERR 79
LS TR (=S o1 (=T (@] o = 1 1Y SR SSRRR 81
5.10. (D 1= g 1= TP PSP PUPPP R TPPPPPPPPPPP 84
5.11. 11121 (e Y07 o] o1 ¢=] 1 1= PRSPPI 85
5.12. ST oL 1ot ST @ A =T o - PRSPPI 85
5.13. L o [T] o = 86
5.14. (= T= L Oo] o] =1 1= PR PTUPPRRR 87
5.15. REAISUIMTACE ...ttt e oo oottt e e e e e e e e a e bt teeeaeeeaananbeeeeaaeeeaaannnbneeaaaeeaanns 89
5.16. (07eTaaT ol 1=V (@7] o] r= 110 =] SRR 90
5.17. LO70] 1 ¢= T 01T I T To] PSR 92
5.18. S (g e (=10 o] g1 £- 1 0 1= PP 93
5.19. (22T [. [o] o 11 T PR PPPPRRT 94
6. (oo TR () = PRSP 95
6.1, LOCKS & KEYS - INTrOAUCTION ... ettt e e e sab et e e e rabe e e e s anteeeesanreeaeea 95
L I o Vo] - o] U PSRRRR 95
LR T 13T 4 Yot £ oY1= o) [PSSRRR 96
L S G- 1Y = To [@70 g =1 T PRSP OTPPPRPRI 97
6.5, LOCKADIEWITNIKEYoiiiiiiiiii ittt ettt e e e oo ettt et e e e e e e s aateeeeeeeeeaaaannbeeeeaaeeeaaannsaneeeaaeeaann 99
LG T -1/ 4 o PRSP 100
LT © 0= o F- o) 100
Lo T = T] (o] o 1= g =1 o1 [Y 101
7. [To | 01 =T o To I o = PSRRI 102
7.1, Light and Fire - INtroOUCTIONcoo ettt e e e et e e e e e e e st e e e e e e e e e annbnneeeaens 102
A 4T | 011 =R 102
AR T W o]) 65 ToT U (o= TR 102
742 =T o 1T | o | O 103
A T O7- T g To | LT Sl (= To TU o SO 103
4L T © 1 =T o o T RSP 105
A A = od Tt 1Y =) o]] o o)G 107
4 T)V g = 0 111 (= TS TR U R PSPPI 108
8. [1o T o TR T o 1o SRS PEPORPRR 110
8.1. Hiding & Finding - INtrOAUCLION ...ttt e e e e et e e e e e e e eneneeeeeens 110
< T2 o 1o T o TR A o] (o L T PU R USPPI 110
8.3, FiINAING DY MOVINGttt e e e e e e e bt te et e e e e e e s atee et e e e e e e e s nnbeaeeeaeaeeeannbnneeaaans 111
8.4. SIGhtPresence & QSLISTEAoooiiiii ettt e e e e e e st e e e e e e e e nnrneeeeaens 112
S 28 TR o 1o o =Y o S 113
e TG T oy =YY Y o1 = =) S 114
9. €T To [0 1<) R 0] 1 (4] PSR 116
1S IR IR C = To o =1 (I [o1 (o To [e 1T o IR 116
1S 252 = 1)1 o] o TS 116
1SR R - o 1Y =Y | = SRS 117
1S T o 4 g T | Y=Y P TS PPI 117
1S T T 7= 1 - o RS 118
1S 2L T V[0 g1 oYY =T | I T PU R POPI 119
0.7, DYNAMIC LOCAIONS ...ttt e e e e e oottt ettt e e e e e s abee e e e e e e e e e s nnteneeeaeaeeeannbnneeaaans 119
1S R T I T PRSP 123
1S 28 R I - Y S 127
9.10. (016 0o £ o PR 129
9.11. 1 (o o PR 130

TADS 3 Tour Guide

9.12. [T) PR PRRRR 131
9.13. N 7= o I 1o o1 SRR 133
1O, FUSES & DABIMONSuuiiiiiiiiiiiiieieieieietetatatatatabatetetataeeeaeetaseessssasasasasssasssessssssssssssssssssessessssssssssssssssssnnssnnsnnnnnnnnnnnns 135
10.1. U L 135
10.2. I F= 1= o 4T} o 137
10.3. ST LT=T ST L= R RRRRRRRRSPPRRPRS 140
10.4. ST aLT=Y I E=T=Y o o] o RSSO 142
10.5. el a T 011D =TT o g o] o P PP PPPPR U PPPPPPPPPP 142
10.6. ONETIMEPTOMPIDAEMON ...ttt e e et e e e e b e e e enbb e e e e anneeeeeannbeeeeannee 142
11, MOAUIEEXECODJECESeeiiiiiiiiiiieie ettt e ettt e e s ea bt e e s ea bt e e e e aab et e e e aabeeeesanbeeeesanbeeeeeanbeeeesanteeeeans 144
11.1. Y[o [F] [b= ot O] o] =Y o PR PRRRR 144
11.2. a1 (O o)1= (PSSP USRSTRSIN 144
11.3. =T 011 o] =T PR PRRRR 145
11.4. I T= (YT o =T o] TP OPUPRRRR 146
11.5. 0TSy L aCTS] (0] (=10 o] [T TP PRRRR 146
11.6. 011 (0 aTe (010 o)1= o TP OPUPRRRR 147
11.7. e CC] A= =1 (O] o] 1= o PSPPSRI 147
12, PUShiNg THINGS AFOUNGeeiiiiiiee ettt e e e sttt e e s aa bt e e e e eabe e e e e aabeeeesanbeeeesanbeeeesanbeeeesanteeeeans 149
12.1. LI = AT =L 0T =1 o] [SRR 149
12.2. U I = NVZ=T | == T = P 151
13, INEANGIDIES & SENSES....cc ittt et e ettt e e e aa bt e e e e be e e e e ettt e e e anbeeeeeanteeeeeas 153
13.1. INEANGIDIES = OVEIVIEBW. ...ttt et e e ettt e e e sa bt e e e eabe e e e e anbeeeeeanbeeeesanreeeeea 153
13.2. [T e= oo 1 o] (= P EETPUPUPRRRR 153
13.3. Dy e= T[T =Y @7 o o1 1= o1 (o] 153
13.4. L0 Lo U T - SRS 155
13.5. V2= T oL o 11 1= SRR 157
13.6. 0] 10 o110 Lo Lo} SRS 158
13.7. IS L] 1= o= SRS 160
13.8. 160 o o) PR 160
13.9. N[0T E=T = RSP 162
B T O B =T F1 1 @ oL 1= 1 (o SRR 164
R TR I R 1= o TS T o Y Y= o | SRR 165
S A1 = Tor =1 o1 [T SRR PRRPRPRRPRRRRNE 170
14.1. AHAChabIEs - OVEIVIEW ... 170
14.2. AHAChabIe ... 170
14.3. NEArDYALAChADIE. et e ettt e e e e e e ettt e e e e e e e e nnnreeeeaaeeeanns 174
14.4. L (UTe YN F=Ted 1 =1 o] [U U PRRRR 176
14.5. PermanentAttaChmeENnt ...ttt 177
S TR \ V=T (Yo | 2o o] o 4 O PPRRPRRRRRN 179
15.1. NESEAROOM OVEIVIEW ...ttt ettt e 179
15.2. N LT (Yo Lo o o 1SR 179
15.3. o] (o104 o - 1| 180
15.4. L F= 11 (o] o I 180
15.5. N[g 1o F=1 | =d P= Y1 (o] 5 o VT 181
15.6. Yo SRR 183
15.7. L - | RSP P 183
15.8. [1o | a1 AN T=E] (= To | Lo Yo 1 o U PRRRT 184
15.9. (O 111 (@ == o] o SRR 185
00 O TR =TT] 1 o SR 187
TR R V=Y o 1= SR 189
LRSI V=Y 1ol 1Y = 2T 1= S 191
ST |V [V (1 o o R RRPRRPRRRRPRRRRNE 195
16.1. U] o Yo 195
16.2. UYL T T3 = g o= P 196
16.3. UYL= To =Y = o [P 197
B 7o =Y o1 1 1o o =S RRRRRPRPPRRPRRRRRRNE 199
171. (070]|[=To1 1AY=L €T o1 U o I] €= 1 [ST 199
17.2. CollectiveGroup (IMODIIE)ottt e e e e e ettt e e e e e e s nteeeeeaeeeeeannrnneeeeans 202
S T o 4o £ TP 205
18.1. T o SR 205
18.2. Y=Y o = 205
18.3. RS (0] 0] Y= 1 1 SRS 207
18.4. (O3 o1 V=T o] RO PP 207
18.5. =T aTe (o 1 oYY o4 1 SR 209
18.6. SHUFIEAEVENTLIST ... et b e aa s e s e aasaaasasassssassssssssssssnsssssssnssnssnsnnnnnnns 210

TADS 3 Tour Guide

18.7. EXTErNalEVENTLISTttt e et e e e e e e e e e e e e e e e nnnreeeeaaeeaaaa 210
18.8. SYNCEVENTLIST ... ettt e e e e e et e e e e e e e e e e sbeeeeeeaeeeaannnbeeeeaaeeeaaannnneee 210
18.9. (2= T To (o] o Yty T aTe 1S Tex 1o PR OUPRRRT 211
L T Yo (o] 3 < B A\ O PP TOUPR 212
19.1. OVEIVIEW = ACLOIS & NPCS ...ttt e ettt e e e e e e e e e et e e e e e e e e e e annnbeeeeaaeeeaaannneees 212
19.2. BASIC ACLOIS ...ttt ettt e e e e e et e e e e e e et e e e e e e e e r e e e e e e e s e e e e e e e e e 212
19.3. BasiC ACIOr CUSTOMIZALIONcoiiiiiiiiiiee et e e ettt e st e e e e snbe e e e snbeeeessnbeeeeeas 214
19.4. ACIOr KNOWIEBAGE ...t e et e e e e e e e bbbt e et e e e e e s bbb e e e e e e e e e s nnnreeeeeeeeaanns 215
19.5. MOVING ACLOIS ATOUNG.....eeeeiiiieiiiit ettt e et et e e e e e bbbt e et e e e e e e s b e et e e e e s aa s s bb e e et e e e e e s nnnrneeeaeeseanas 216
19.6. FNer (o)] €= | (- T PSPPSR 216
19.6.1. OVEIVIEW = ACKOI STAES ...eeiiiii ettt e e e e e e et e e e e e e e e s naeeeaeas 216
19.6.2. HEMILACIOISTALE ...ttt e e e e e e ettt e e e e e e e s nnnreeeaeaeeeanns 218
19.6.3. ACCOMPANYINGSTALE ...ttt e e e et e e e e e e e e s ne e e e e e e e e e e e annbeeeeeaeeeeaannneees 218
19.6.4. AccompanyingINTravelState 219
19.6.5. €10 To [=To o0 5] =) (= PP UPPPRRPR 220
19.6.6. GUIAEAINTIAVEISTALE ...ttt e e e e e ettt e e e e e e e e e nnnaeeeeeaeeeanns 222
19.6.7. INCONVEISAtIONSTALEeeiiiieiee ettt e e sttt e e s bt e e e saba e e e e aneeeas 222
19.6.8. ConversatioNREAAYSTAEeiiiiii e e e 223
19.6.9. LC14=TC i g To o (o) (o] oo] USSR 225
19.7. B Ie] o1l =l 1= ST PO P PP PP OPPTPPPPPPPP 226
19.7.1. L Ie] o1led =1 11 YT PP PRPPPRPPON 226
19.7.2. LC 11T I o] o[TSRS 229
19.7.3. ShOWTOPIC e 230
19.7 4. TNV o [0V o] o] (o 232
19.7.5. N1 4 oo [T UTP U P T SR 235
19.7.6. L aTLAE= 1C=Y o] o (o2 236
19.7.7. FN] o] o 2O 240
19.7.8. I o] o) TSP 243
19.7.9. ASKTIITOPIC ...ttt ettt e e e e ettt e e e e e s bbb e et e e e e e e e b e e et e e e e e e e aanbb e e e e e e e e e e annnneee 244
RS I TR N1 g o T o] o) [PPSR 245
19.7.11. ASKADOULFOITOPIC .. eteiie ittt ettt e e ettt e e e sa et e e e anbe e e e s anbeeeesanbeeeesanbaeeeeanbeeeenas 248
19.7.12. ASKTEIISNOWTOPIC ..ttt ettt e ettt e e s e sttt e e e aabe e e e e aate e e e s anbeeeeeanbeeeeeanbeeeesanbaeeesanbeeeeaas 249
19.7.13. ASKTEllGIVESNOWT OPIC ... iutiiieiiitiie ettt ettt e e ettt e e e sa et e e s ss bt e e e s anbe e e e e anbeeeesanbaeeesanbeeeeaas 249
19.7.14. YES,NO & SPECIAITOPICS ...uuuuuiiiuiiiiiiiiiiiiiiiiiiii e s aaaaaaeaaeasaasasasasasssssssasssssnssnnssnssnsnnnsnnnnnns 250
RS e S T o 11 o o] oo PRSP 250

R T G T 1491 o1 (=1 T 3 o] o[RRRRN 251

LR I A = = oo [PPSR 251
RS A < T 1 4T 0] = /Y o] oo TR 252
19.7.19. LEAVEBYETOPIC ...eeeeeieeeieee ettt ettt ettt e e e e e e e ettt e e e e e e e nnbeeeeeeaeeeaannneeeeeeaeeeaaannnreee 252
(RS IV R = To 4= Te =Y =l o) oo PSPPSRI 252
19.7.21. e (o] 0= /=N o] oo PP PP PP PP PP PPPPPPPPPP 252
19.7.22. HelloGOOADYETOPICveiieiiiiieeeiittie ettt ettt e ettt e e s sttt e e e ettt e e e eate e e e e anbeeeesanbeeeesanbeeeesanbaeeesanbeeeeaas 253
RS A T |V [Tl o] o] o PRSPPSO 253
(RS A S o] o 1oL €1 o 1¥ o PSPPSRI 256
RS A2 T B T - 1014 o] o] (o PRSPPI 257
RS I TS ¥ To o =T} (= Te [o] o) (o= 267
19.8. (070 01V 6= 11 To] o T A\ oo Lo SRR 274
19.8.1. Conversation NOAES - OVEIVIEWcoiiiiiiiiiiii ettt e e e e e e et e e e e e e e e e anbeee e e e e e e s e annnreeeaaaeeeann 274
19.8.2. 107] 01V oo [P UEPP S UPPRPPR 275
19.8.3. D (1T 1] oo 277
19.8.4. I\ [0 o] o] (oS RPRR 277
19.8.5. ST o Lo =1 I o [SRR 277
19.8.6. INItTAIECONVEISALION ...coiiiiiiiii ettt e e st e e e s nb e e e e e bteeeeenbeeeeeannee 279
19.9. FaNe =T g o E= 1L =T 0 o T PP TP PPPPOPPTPPPPPPPP 285
19.9.1. FaNe =T o £=1 1 =T o o DO PP PP UPRPPPRPPON 285
19.9.2. L070) 177N =Y g o £=1 L (=1 o ISR 287
19.9.3. DelayedAgeNaItEIM ...ttt e e e e e ettt e e e e e e e e e e e e e e e e e e e nnnaeeeaaaeeaana 288
19.9.4. More Agendaltem EXAMPIES ...ttt e et e e e e e e e e e e e e 289
S T L TR @7 4T 4 F= T Lo 10 To T\ L = 1 PR S 292
19.10.1. Overview - CommandiNg NP CS e e et e e e e e e e e ae e e e e e e e e ennneeee 292

R T O @70 1 4 ¢ =12 o I 1] o] (o30SR 293

R TR O JRC T BT=1 71011 (@01 a T F=Ta o ll Io] o1 (oS RRPRRRN 294
19.10.4. Overriding 0DEYCOMMEANGooiiuiiiiiiiiiie ettt e sttt e e e sa bt e e s snbe e e e s snbeeeesanbeeeeaas 295
19.10.5. TCOMMEANATOPIC -.eeeeiiteiieiittiiee et eee ettt e ettt e e e ettt e e e aa b et e e e as bt eeeeaabeeeeaaabeeeesasbeeeesanbeeeeeanbeeeesantaeaesanbeeaeaas 296
19.10.6. A Modified DefaultCommandTOPICccuiiiiiiiiiiiiee e e e st e e e snbe e e e e anbeeeeeas 299

TADS 3 Tour Guide

D2 TR o o YU = o[PRSP PPRPR 301
201. (070] 0151011 =1 o] = SRR 301
20.2. (70T ETU] L[] o] (o200 USRS 303
20.3. =] =101 1 (@7 o] E-T U L I] o) o 304

D22 I oo | o PP PPRPR 306
21.1. S Teo 4T oo I @ A=Y YT PSSR 306
21.2. =T Lol 0 1T - RSP 306
21.3. ACRIBVEIMENT ..ottt e e e oot e e e e e e e bbb et et e e e e e e s bbb e et e e e e e e s nnnrneeeeeeeeanns 307
21.4. SIMPIEACNIEVEMENT ...t e et e e s st bt e e e e abb e e e e nbb e e e s anbeeeesanneeeeeannes 310
21.5. LT T o | o] o £ PP PRSP PP PPUPPPPRTPIN 310
21.6. AWANAPOINTSONCE ...ttt e oo oottt et e e e e e e e ate et eeea e e e e e nnbeeeeeeaeeaaannnbeeeeaaeeeaaannneees 311
21.7. SCOMERANKTADIE ...ttt e ettt e e e e e e ettt e e e e e e e e e e nnbeeeeeeaeeeaannnbeeeeaaeeeaaannneees 311
21.8. L E=) To o] - SRR S 312

D & (141 PSSO RTUPROPROTIN 314
221. HINES = OVBIVIEW ...ttt ettt e e oo e ettt ettt e e e e e e e aateeeeeaeesaaannsbeeeeeaeeeaaannnseeeeaaeeaanns 314
22.2. TOPHINIMENU. 314
22.3. [110111 1= o U P PO P PP PP PPPPR U PPPPPPPPPP 314
22.4. L€ T | RO 315
22.5. T PSPPSRI 318

b4 T 01 (g 1Y (a1 0) 4 44 F= Lo] o PP 320
23.1. 1070) o3[o 1 To l 24=1 0 =T o (- RSP 320
23.2. =gt [UF= o T L] (o4 1 = 11 o] P SRURRRTRRIN 320
23.3. DEfINING VEIDS.....ccoiiiiieei ettt oottt e e e e e e a bttt et e e e e e e s aabe et e eaeeeaaannsbeeeeeeeeeaaannnseeeaaaeeaanns 320
23.4. Message Substitution Parameterso i a e 320
23.5. o TS G =T] PR OPUPRRRR 321

D S -1 o1 o] = (= 322
24 1. Achievement Template ... 322
24.2. ACIOr TeMPIAte ... 322
24.3. L1 o] o (o =10 0] o] = L (= I PP PP PP POPTPPPPPPPP 322
24 .4. (070) 1Y\ [oTo [T I1=T0 T o] F=1 RO 322
24.5. DeadEndConnectorTEMPIALEcoiiiiiiii et et e e et e e et e e e anbeee e 322
24.6. DLy =10 L o] o o =10 T o] F=1 (PSP URRRTRRIN 322
24.7. ENnterable TemPIate...... ..o et e e e e a e e e 323
24 8. EXItable TEMPIALE ..ottt 323
24.9. Y=Y I A =T 0] o] = 323
b S L O I oo g To] =T =Y 0 0] o] F= (= 323
D2 S I € o= 1 =Y 0 g o] = L= 323
D o U o 11 I =Y 0 o] = (= 323
D o G T Y/ Y o O T =Y o T =Y 0 g o] = (= Y 323
24.14. MenuLongTopiClem TemPIAtecooiiiiiiiiiie e e e e e e e e s b e e e sneeeas 324
24.15. MenuTopiCem TeMPIALEooiiiiiiie ettt ettt e ettt e e s be e e e e s bbe e e e snbeeeesneeeas 324
P L T [Tol W o T (o =T 4 0] o] = (= R 324
P A [V]| (] M Yo =T 4T o] = L (= PP 324
24.18. NOTravelMessage TeMPIALEocuuiii ittt e e st e e e sttt e e e sbbe e e e snneeeesnneeeas 324
24.19. OneWayRoomConnector TEMPIALE..........coouiiiiiiiiie et saeeeas 324
24.20. Passage TemMPIALe ...t e e e e e e et e e e e e e e nbeae e e e e e e e e e nnrnreeaaens 324
D I (o To] ¢ AT =T 1 4 o] F= (= 325
24.22. ShuffledEVeNntLiSt TEMPIALE ...coooiiiiiiieeeeeeeeeeeeeeee ettt e e e e e e e e e e e e e e eeeees 325
P A TS T o = Yo b=l o] oo I =Y 1 o1 o] F= L (= X 325
P 1\ [0 =T B =10] o= L (= TP PPI 325
24.25. SYNCEVENLLISt TEMPIALEoeiiiiiii e e e e e e e et e e e e e e e e ennenneeeaens 325
P T I 11 To T =T 00T o] =1 (= SRR 325
24.27. ThingState TeMPIALE........cooiiiiiii ettt et e e st e e e sttt e e e s nbbe e e e anbeeeesnnneeas 326
P T oo (o] =g i VA =Y 4T o] = | (= PR 326
24.29. TOPICGroUP TEMPIALEcooiiiiiiiiiee ettt e ettt e e st e e e s be et e e s nbbe e e e snbeeeesnneeeas 326
24.30. TravelMessage TEMPIALEcoooiuiiiiiiiii ettt ettt e e sttt e e st e e e s bb e e e e anbeeeeannneeas 326
P2 T U T 1 [o To I =T 4 o] o] = (= TP PPI 327
P2 YRV o Ter=1 o 1@ Lo [=Tox A =10 Y o] F= | {= TP U PO PPR 327

D24 T O 4 -1 T T PP PPRRR 328
251. (07 aF= T o =TSN (o] Y T 0 Bt I ST 328
25.2. (07 aF= T o =TSN (o] g Y A T 0 Bt SRR 328
25.3. (07 aF= T o =TSN (o] Y T 0 Ft I O SRR 328
254, (07 F=T gL [T (o A TN 1R RO 328
25.5. (07 F=T gL ToTo (o A T I RO 329
25.6. Changes fOr JUlY-SePt 2004ooii it et e e e sttt e e s b et e e e s ab e e e e s be e e e e abee e e e anneeeeeanneeas 329

Page 6

TADS 3 Tour Guide

25.7.
25.8.
25.9.
25.10.
25.11.

(07 aF= T o =TSN (o] g T O APPSR 330
(07 aF= T o =TSl (o] gV B 0 T SRR 330
Changes fOr May 2004 ... ettt e e oottt e e e e e e e e e ettt e e e e e e e e e a e et et te e e e e e e nbeeeeeaeeeeeannrnreeeaans 330
(07 aF= T o TSl (o gV T O] o ST 330
Y =T e TN o 412 010 PSR USRR 330
... 331

Page 7

TADS 3 Tour Guide

1. Introduction

11. General Introduction

The adva library that comes with the TADS 3 Interactive Fiction authoring system is extensive and powerful. It can
also seem rather overpowering to new users of TADS 3, because there is so much to learn, and one hardly knows
where to start looking for what one needs.

Enter the TADS 3 Tour Guide. Its aim is to give a guided tour of some of the main features of the TADS 3 library. We
shall not be exploring every nook and cranny (at this stage it would probably be more confusing than helpful to do so).
Nor shall we be able to wander down every side street and alley, though we may poke our noses into a few. What we
shall aim to do is to walk round most of the main streets so that their basic layout and interconnections will hopefully
start to become clear.

This Tour Guide is not intended as the first port of call in learning TADS 3. If you are a complete beginner | strongly
recommend you start with my introductory Getting Started in TADS 3 : A Beginnner's Guide, which you can download
from http://www.tads.org (or which you may already have with your TADS 3 distribution). Although there will be some
overlap with material covered there, the Tour Guide assumes basic familiarity with programming in the TADS 3
language and the definition of simple TADS 3 objects. For this Guide is nof a TADS 3 manual, or a substitute for one.
Neither is it an introduction to writing games in TADS 3, or an exhaustive description of every Class, property and
method in the TADS 3 library. Finally, it is nof a complete guide to the TADS language, many features of which are
already well documented in the System Manual that come with the TADS 3 distribution, or which can be downloaded
from http://www.tads.org.

What this Tour Guide is is a kind of Guided Tour to the TADS 3 library, that tries to take in as many as possible of the
classes, properties and methods that are likely to be useful to most game authors. The assumption is that what you
will find useful is not so much a load of abstract explanation, but rather a series of concrete examples. This Tour
Guide therefore takes you through developing a sample game, introducing each Class in turn with one or two
examples of its use. Later sections re-use classes and properties introduced before, and sometimes suggest further
sophistications.

This Guide may thus be used either as a tutorial or as a reference (or both). As a tutorial it may be worked through
from start to finish, developing the game step-by-step until all the main features of the library have been introduced
and exemplified; you may like to use it as a follow-on tutorial from Getting Started in TADS 3. But it may also be used
as a reference to the use of various library classes. For the latter purpose the Windows help file version of this Guide
is likely to prove most useful; for the former you may prefer the PDF version. Note, however, that the Tour Guide will
probably be more useful as a reference once you have worked through it as a tutorial, since in the very nature of its
treatment of developing a game, its later sections presuppose objects and concepts mentioned in earlier sections, and
many techniques have to be introduced in passing. Note also that a complete reference to the library is provided by
the TADS 3 Library Reference Manual.

Of necessity there must be some compromise between the need to develop the sample game in a reasonably logical
sequence and the desirability of presenting the various library classes in a reasonably logical sequence. For this
reason we start by looking at Rooms and Connectors, since laying out some kind of map is necessary before anything
much else can happen in a game. We then go through the other Classes representing concrete game objects, before
going on to look at the creation of NPCs and the use of more abstract classes for conversations, scoring, hints and the
like.

IMPORTANT NOTE - This Guide is intended for use with TADS 3.0.16. Although changes from the immediately
preceding versions of TADS 3 (especially TADS 3.0.12 and later) are relatively minor prior, successive library updates
have substantial changes; if you are using a significantly older version of TADS 3 a great deal in this guide may not
work. Please therefore:

» Update to TADS 3.0.16 before attempting to work through this Guide. See http://www.tads.org/t3dl.htm.
« If, for some reason, you are unable to update to TADS 3.0.16, please be aware that any problems you encounter
may be due to incompatibilities between versions of the library rather than bugs in the sample code.

Finally, | hope this Tour Guide will prove helpful, and even enjoyable to use. | always welcome feedback and
suggestions, not least those that point out genuine errors, typos or bugs. | can be contacted by email on eric dot eve

Page 8

http://www.tads.org/t3dl.htm
http://www.tads.org/
http://www.tads.org/

TADS 3 Tour Guide
at hmc dot ox dot ac dot uk.

Eric Eve
10-Mar-07

1.2 The Sample Game

The Sample Game we shall be developing together is whimsically called The Quest of the Golden Banana. There is
nothing stunningly original in its design, and it will probably strike you as Dr Who meets the Lord of the Rings with a
hint of old-fashioned text adventures like Zork thrown in for good measure. For our purposes, however, its contrived
nature is an advantage, since it allows us to set up of sorts of implausible situations and puzzles that can put the
TADS 3 library through its paces.

To give a brief summary of the game (which you might want to try playing before getting to work on this Tour Guide),
you (i.e. the Player Character) start outside the entrance of a cave. The only way to go is in, and once you're in there's
a rockfall that blocks the only obvious way out. To complete the game you need to fulfil two objectives: (1) locate the
Golden Banana and cast it into Mount Gloom to prevent its falling into the hands of the dreaded Cabal, and (2) help
the young woman you'll quickly encounter to get back out of the cave (i.e. both you and the woman must arrive back
at the starting location). To fulfil the first objective you need to sail a ship round an underground lake to various
destinations; to fulfil the second you need to get a TARDIS back in full working order: you'll also need the TARDIS to
fulfil the first objective, travelling to locations as disparate as King Solomon's palace three thousand years in the past
to an abandoned space station a thousand years in the future.

1.3. Templates

Since we shall be using templates extensively to define objects throughout this Guide, we had better start by
explaining what they are and how they work.

If you have worked through Getting Started in TADS 3 or some similar introductory guide, you'll already have
encountered templates. Templates are built into the TADS 3 language (in the sense that the language provides the
facility to define and use them) and into the adv3 library (in the sense that the library defines a number of standard
templates). This Tour Guide accordingly assumes that the use of templates is the standard TADS 3 coding style, and
is to be encouraged. But first, what exactly is a template?

Put simply, a template is a means of defining an object in a more succint form in order to save typing effort and
produce less verbose code. On the principle that a couple of examples are a good deal easier to follow than several
paragraphs of abstract, theoretical discussion, we'll explain this by showing how templates work with the most
common kind of objects you're likely to define in a TADS 3 game: Rooms and Things.

We'll start with a room. If we defined a Room without using a template, we should have to assign every property we
wanted assigned explicitly. Such a definition might look like:

entranceCave : Room

roomName = 'Entrance Cave'
destName = 'the entrance cave'
desc =

"Compared with the narrow tunnel leading out to the north, this
rough-walled cave seems positively spacious. A red sign fixed to
one wall suggests that the narrow tunnel is the only way back out to
the valley, while a blue sign next to it welcomes you to the cave.
Directly under the signs a narrow ledge has been carved into the
wall. There appear to be no other caves at this level, but a sturdy
steel ladder leads down through a large round hole in the floor. "

north = entranceTunnel
out asExit (north)

’

Taking advantage of the Room template, the same definition could be coded as:
Page 9

TADS 3 Tour Guide

entranceCave : Room 'Entrance Cave' 'the entrance cave'
"Compared with the narrow tunnel leading out to the north, this
rough-walled cave seems positively spacious. A red sign fixed to
one wall suggests that the narrow tunnel is the only way back out to
the valley, while a blue sign next to it welcomes you to the cave.
Directly under the signs a narrow ledge has been carved into the
wall. There appear to be no other caves at this level, but a sturdy
steel ladder leads down through a large round hole in the floor. "

north = entranceTunnel

out asExit (north)

These two definitions are entirely equivalent; both assign exactly the same values to the same properties.

So how does this work? The Room template is defined in the library as follows:

Room template 'roomName' 'destName'? 'name'? "desc"?;

This definition means that when defining an object of class Room (or one of its subclasses), if the class name is
immediately followed by a single-quoted string, that string will be assigned to the roomName property; the next single-
quoted string, if present, will be assigned to the destName property, the next to the name property, and a double-
quoted string that comes at the end of this list will be assigned to the desc property. The question mark after an item
in a template definition means that this element is optional and may be omitted.

Accordingly, the following definitions using the Room template are all legal:

entranceCave : Room 'Entrance Cave'

Which is equivalent to:
entranceCave : Room
roomName = 'Entrance Cave'
Or
entranceCave : Room 'Entrance Cave'
"Compared with the narrow tunnel..."
Which is equivalent to:
entranceCave : Room
roomName = 'Entrance Cave'
desc = "Compared with the narrow tunnel..."

Or

entranceCave : Room 'Entrance Cave' 'the entrance cave'

’

Which is equivalent to:

entranceCave : Room
roomName = 'Entrance Cave'
destName = 'the entrance cave'
7
Or
entranceCave : Room 'Entrance Cave' 'the entrance cave' 'entrance cave'

Which is equivalent to:

Page 10

TADS 3 Tour Guide

entranceCave : Room

roomName = 'Entrance Cave'
destName = 'the entrance cave'
name = 'entrance cave'

Note, however, that properties defined in the template must appear in the order shown, so that the following would not
match the template:

entranceRoom "Compared with the narrow tunnel..." 'Entrance Cave";

entranceRoom 'Entrance Cave' "Compared with the narrow tunnel..." 'the entrance cave';

In practice, virtually all rooms will need to define a roomName and a description (and this is the point of the template,
to allow the common properties of all rooms to be defined with the minimum of effort). So you will normally define
rooms in one of two forms:

myRoom : Room 'My Room Name'
"My room desc "
/* other properties/methods */

or

myRoom : Room 'My Room Name' 'my room destName'
"My room desc "
/* other properties/methods */

Not only does this make defining rooms briefer, it also makes your code more readable, since the key properties
(roomName, destName if defined, and desc) will always appear in the same relative location in the definition of a
room, rather than at some possibly random location in a list of properties (for these key properties will seldom be the
only properties you'll need to define on a room). Once you get used to the template, you can look at a room definition
and see its roomName and description at once.

Note that a template defined for a class is also valid for all its subclasses. So the Room template we have just
described can (and should) also be used for OutdoorRoom, DarkRoom and FloorlessRoom (and, indeed, for any
specialized subclasses of Room you may define in your own game).

Now let's look at the definition of the Thing template (which also applies to all the subclasses of Thing, i.e. virtually
every game object that represents a physical object in the game world, unless there's a more specific template
applying to the subclass).

The Thing template is defined like this:

Thing template 'vocabWords' 'name' @location? "desc"?;

This means that typical Thing definitions will tend to look like this:

brassCoin : Thing ' (small) brass coin/groat*coins' 'small brass coin' @longCave

"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

Which is exactly equivalent to:

brassCoin : Thing
vocabWords = '(small) brass coin/groat*coins'
name = 'small brass coin'
location = longCave
desc = "On the obverse is the head of King Freddie the Fat, and on the reverse

is stamped ONE GROAT. "

Page 11

TADS 3 Tour Guide
Or this:

++ fluidLink : Thing 'fluid link' 'fluid link'
"It's a long transparent tube. Both ends are capped with some kind of shiny
metal, and at one end is a tiny hole. "

Which is exactly equivalent to:

++ fluidLink : Thing

vocabWords = 'fluid link'
name = 'fluid link'
desc = "It's a long transparent tube. Both ends are capped with some kind of shiny

metal, and at one end is a tiny hole. "

The main difference is that the second example, the fluidLink, uses the ++ notation to specify its location relative to
some previously defined object, so that it does not need to set its location property by any other means. Since
@location? in the Thing template includes a question-mark to show that this element is optional, it can be omitted
from the object definition and the template will still match. The brassCoin, however, does not use the + syntax to
determine its location, so this needs to be done some other way; hence we specify its location using @1ongCave.

You may define the occasional Thing that is so insignificant that it does not merit a description, in which case you can
simply omit the double-quoted string from the definition, making for extremely concise code, e.g.:

+ peanut: Food 'peanut/nut' 'peanut';

or

peanut : Food 'peanut/nut' 'peanut' @kitchenTable;

This also illustrates how subclasses of Thing (of which Food is one) can use the same template as Thing.

There's two further types of template we ought to consider; the first is one that can match alternatives at the same
location within the sequence of properties. Here's a simple example from the library:

DefaultTopic template "topicResponse" | [eventList];
This template means that you can define either

DefaultTopic "Bob looks bored with your question";
Meaning

Default Topic

topicResponse = "Bob looks bored with your question"
Or
DefaultTopic ["Bob looks bored', 'Bob yawns', 'Bob is so bored he falls asleep']:;
Meaning
DefaultTopic
eventList = ['Bob looks bored', 'Bob yawns', 'Bob is so bored he falls asleep']

(Which isn't actually very useful unless your DefaultTopic also inherits from an EventList class, but that's another
matter).

A more complex example is provided by:

TopicEntry template +matchScore?
@matchObj | [matchObj] | 'matchPattern'
"topicResponse" | [eventList] ?;

Page 12

TADS 3 Tour Guide
Which can be matched by something as simple as

TopicEntry @bob
"<g>That's none of your business!</g> he declares. "

Or something as complex as:

TopicEntry + 110 [silverCoin, goldCoin, brassCoin]
[
' <g>I\'ve never been interested in coins.</g> he growls. ',
'<g>Don\'t try to tempt me with money - I can\'t stand the stuff.' he complains. ',
'<g>Filthy lucre! Take it away!</g> he demands. ',
'<g>The root of all evil.</g> he opines '
]

Although we shan't try to run through all the possible permutations here.

The remaining type of template we need to consider is that which uses the inherited keyword in its definition. In fact,
the library defines very few of these; one (fairly important) example is:

Passage template ->masterObject inherited;

In this context the inherited keyword refers to the templates of all Passage's superclasses, so this template could
potentially represent a series of templates, in which inherited is replaced with the template of each of Passage's
superclass in turn (and also with nothing). Passage inherits from Linkable, Fixture and TravelConnector, none of
which defines a template. Linkable inherits from object (so there's no template there). Fixture inherits from
NonPortable which inherites from Thing which inherits from VocabObject; TravelConnector also inherits from Thing.
The possible templates Passage can inherit from are therefore those for Thing and for VocabObject. This foregoing
definition is thus equivalent to the following:

Passage template -> masterObject;
Passage template -> masterObject 'vocabWords';
Passage template -> masterObject 'vocabWords' 'name' @location? "desc"?;

Note that this is almost but not quite equivalent to:

Passage template -> masterObject 'vocabWords'? 'name'? @location? "desc"?;

The reason it is not equivalent is that this template would allow the location or desc properties to be specified in the
template without the name property, which the real Passage template will not.

Note that since Passage inherits from Thing and VocabObiject, it is also perfectly legal to use the Thing and
VocabObject templates with a Passage, e.g.:

Passage 'passage';
Passage 'long passage' 'long passage' @diningRoom "The long passage leads into the hall. ";

All this actually looks a good deal more complicated than it will ever work out in practice, for in practice, if you want to
use a Passage (or one of its subclasses) you will either use the Thing template to define it, or the form of the Passage
template in which inherited picks up the Passage template. Thus, although you can use other template combinations
with Passage, in practice most of the time (perhaps 99% of the time), you will use Passage and its subclasses as ifits
template were defined:

Passage ->masterObject? 'vocabWords ' 'name' @location? "desc"?;

This applies equally to the other classes for which the library defines templates including the inherited keyword,
namely Enterable and Exitable.

Finally, to see how templates work with multiple inheritance, consider the following:

class TestA : object

weight = 0
colour = nil
mydesc = nil

Page 13

TADS 3 Tour Guide

Class TestB : object
bulk = 0
texture = nil

class TestC : TestB, TestA;
TestA template +weight 'colour' 'mydesc'?;
TestB template +bulk 'texture';

testMe : TestC +20 'rough' ;

testMeAgain : TestC +30 'red' 'wooden';

Results in

testMe : TestC

weight = 0
colour = nil
myDesc = nil
bulk = 20
texture = 'rough'

’

testMeAgain: TestC

weight = 30
colour = 'red'
myDesc = 'wooden'
bulk = 0

texture = nil

’

The testMe object has a definition that in principle could match either the TestA template or the TestB template. It is
the TestB template that is actually matched because TestB comes earlier in the class list of TestC. On the other hand
testMeAgain has a definition that can only match the TestA template, so it is the TestA template that is matched.

Finally, we should consider how the inherited keyword works in the context of multiple inheritance. If we now go on to
define:

TestC template inherited 'shape';

The 'inherited' keyword can inherit any of the templates from any of TestC's superclasses, or else nothing at all. The
definition is thus equivalent to defining the following three templates:

TestC template 'shape';
TestC template +bulk 'texture' 'shape';

TestC template +weight 'colour' 'mydesc'? 'shape';

Note also that objects of class C (such as testMe and testMeAgain) will also continue to match templates defined on
its superclasses (in this case, the templates for ClassA and ClassB).

Suppose we also define an object:

testMeShape : TestC +10 'blue' 'large' 'square';

Now, this can only match the last form of the template, so it will mean weight=10, colour='blue', mydesc='large' and
shape="square'. But what of our previous two objects?

As before, testMe has bulk=20, texture="rough’, while testMeAgain has bulk=30, shape='wooden', texture="red". Since
the TestC template is defined later in the file than the other two, the other two still match first.

Page 14

TADS 3 Tour Guide

1.4. Startup Code : gameMain

Before we can start writing the game proper, we need to provide a tiny amount of startup code. Since TADS 3.0.6n the
startup code you have to supply for a game has been reduced to a minimum. Basically all you have to do is to define a
gameMain object that specifies the player character, perhaps sets some options, and (optionally) shows the
introductory and concluding messages, something like:

gameMain : GameMainDef
initialPlayerChar = me
showIntro ()
{

"Finding yourself at a loose end in the Parser Valley,
you have wandered up to take a look at the famous
Eerhtsdat Caves. You're not entirely sure what they're
famous for, or why they should be worth a look, but that's
what it said the guidebook you found abandoned on the
back seat of the bus, so it must be true. Anyway, you're
here now, so you reckon you may as well take a look.\b";

}

setAboutBox ()

{
"<ABOUTBOX><CENTER>The Quest of the Golden Banana\b

v <<versionInfo.version>>\b
(c) 2004 Eric Eve\b
</CENTER></ABOUTBOX>";

}

showGoodBye ()
{

"<.p>Thanks for playing!";
}

’

You can do more than this on gameMain. Later on, for example, we'll be discussing how you can set up the maximum
score and a score rank table here. You can also set the properties allowYouMeMixing (true by default), and
showExitsInStatusline (also true by default) In case it isn't obvious what these do, here's how the comments in the
library code describe them:

 allowYouMeMixing - Option flag: allow the player to use "you" and "me" interchangeably in referring to the player
character. We set this true by defalt, so that the player can refer to the player character in either the first or second
person, as long as the player character normally uses either or these (in other words, this option is meaningless in a
game when the narration refers to the player character in the third person). If desired, the game can set this flag to
nil to force the player to use the correct pronoun to refer to the player character. We set the default to allow using
"you" and "me" interchangeably because this will create no confusion in most games, and because most
experienced IF players will be accustomed to using "me" to refer to the player character (because the majority of IF
refers to the player character in the second person, and expects the player to conflate the player character with the
player and hence to refer to the player character in the first person). It is relatively unconventional for a game to
refer to the player character in the first person in the narration, and thus to expect the player to use the second
person to refer to the PC; as a result, experienced players might tend to use the first person out of habit in such
games, and might find it jarring to find the usage unacceptable. Furthermore, in games that use a first-person
narration, it seems unlikely that there will also be a second-person element to the narration; as long as both aren't
present, it will cause no confusion for the game to accept either "you" or "me" as equivalent in commands. However,
the library provides this option in case such as situation does arise.

« allVerbsAllowAll - if this option flag is set to nil, ALL (as in TAKE ALL or X ALL) will only be allowed with the basic
inventory management commands TAKE, TAKE FROM, DROP, PUT IN and PUT ON. By default allVerbsAllowAll is
true, which means that ALL can be used with all verbs that allow multiple direct objects (or multiple indirect objects if
your game defines any such verbs). If you wish, you can also override the actionAllowsAll property on individual
actions to determine which of them will and will not accept ALL as a noun phrase.

Page 15

TADS 3 Tour Guide

initialPlayerChar - The initial player character. Each game's 'gameMain' object MUST define this to refer to the
Actor object that serves as the initial player character.

showEXxitsInStatusline - Flag: show automatic exit listings in the status line. We enable this by default. This is an
author-configured option. The library doesn't provide a command to let the player control this setting (although a
game could certainly add one, if desired).

usePastTense - Flag: if true, the game will be narrated in the past tense instead of the present tense (e.g. "On the
table was a banana" instead of "On the table is a banana"). This flag can also be switched in-game to switch
between past-tense and present-tense narration.

verboseMode - Prior to version 3.0.9 this was a logical (true/nil) flag; if it was true, the full room description was
displayed each time the player enters a room, regardless of whether or not the player has seen the room before; if
nil, the full description is only displayed on the player's first entry to a room, and only the short description on re-
entry. Note that the library provides VERBOSE and TERSE commands that let the player change this setting
dynamically. From TADS 3.0.9 this property has become a BinarySettingsltem that shouldn't be overridden by the
game author, first because doing so will almost certainly cause a run-time error, and second because the intention
with the mechanism introduced in version 3.0.9 is that it is up to players rather than authors to set the default they
require. The moral: leave this property alone unless you're very sure what you're doing and have a very good
reason for doing it. Moreover, if you're upgrading an existing game from a pre-3.0.9 version to 3.0.9 or later, make
sure your gameMain doesn't override this property.

Our gameMain object has defined the player character as an object called me, so we next need to define this object,
which, at a minimum, means assigning it to an appropriate class and providing it with an initial location:

me: Actor

desc = "You look even better than the last time you looked. "
/* the initial location */
location = outsideCave

We'll get round to defining the outsideCave location shortly. In the meantime there's one more job we might want to
get out of the way at this stage, and that is to define the versioninfo object, which provides important information about
the game:

versionInfo: GamelID

IFID = 'cd03d4a8-£f39b-ae69-693d-5fddc65£6dd8"

name = 'The Quest of the Golden Banana'
byline = 'by Eric Eve'
htmlByline = 'by
Eric Eve'
version = '1.0"'
authorEmail = 'Eric Eve <eric.eve@hmc.ox.ac.uk>'
desc = 'A combination of cave exploration and time-travel with clear

allusions both to the Lord of the Rings and Dr Who, this game is

primarily an example game to provide a tutorial on the adv3

library for aspiring TADS 3 game authors.'
htmlDesc = 'A combination of cave exploration and time-travel with clear
allusions both to <i>The Lord of the Rings</i> and <i>Dr Who</i>, this game 1is
primarily an example game to provide a tutorial on the adv3

library for aspiring TADS 3 game authors.'

showCredit ()
{
/* show our credits */
"TADS 3 language and library by Michael J. Roberts ";

/
The game credits are displayed first, but the library will
display additional credits for library modules. It's a good
idea to show a blank line after the game credits to separate
them visually from the (usually one-liner) library credits

* that follow.

*/

"\b";

* % X % o

}
showAbout ()
{

"Although this game is winnable, and some players may find it

Page 16

TADS 3 Tour Guide
tolerably entertaining, it is primarily designed as a
sample game and programming exercise to accompany the <i>TADS 3
Tour Guide</i>. The game has thus been designed to give
authors a reasonably comprehensive tour of the library, rather
than as a satisfactory playing experience by the standards
of modern IF. This may result in (a) a certain quirkiness about
the whole game, (b) somewhat bizarre and derivative plotting and
(c) incomplete implementation of non-essential aspects of the
game such as hints, scoring, and decoration objects. This is
because the game's primary audience - people trying to learn
how to program with the TADS 3 library - only need a limited
number of examples of each feature.\b
There should, however, be no actual bugs in the game (that is,
there are not <i>meant</i> to be any actual bugs, although

there almost certainly <i>will</i> be some in practice), so should
you encounter any, the author would be grateful for a bug
report. ";

The first half of this object definition basically defines the bibliographical metadata for the game (for a full explanation
see the 'Bibliographical Metadata' article in the Technical Manual). Note in particular the first field, IFID. This is a
unique identifier for your game (a little like an ISBN number for published books), which must be unique to your game.
It is essentially a set of random hexadecimal digits (0-9, a-f) in the format xxxxxxxx-xxxx-xxxx-xxxx~
xxxxxxxxxxxx. |fyou create a projectin Workbench this number will automatically be generated for you. If you are
creating your project by some other means, you will need to ensure that you add such a number to your definition of
versioninfo. To obtain an IFID that is guaranteed to be truly random, as this needs to be (to ensure the avoidance with
IFID numbers assigned to other games), you can use the TADS IFID generator at http://www.tads.org/ifidgen/ifidgen.
The other bibliographical data (such as the name of the game and its author) should be fairly self-explanatory (but see
the 'Bibliographical Metadata' article for full details). The final two methods contain the text that should be displayed in
response to the credits and about command. Of course, you may prefer the latter to launch a menu rather than just
display a text dump.

Page 17

http://www.tads.org/ifidgen/ifidgen

TADS 3 Tour Guide

2.

2.1.

Rooms and Connectors

Introduction

In the sections that follow we shall endeavour to make use of all the main types of room and travel connector in the
TADS 3 library.

Rooms are locations in which actors and other objects may exist, and between which actors may travel. Since travel is
possible directly from one Room to another, Rooms are also Travel Connectors. TravelConnectors allow travel
between Rooms: their class hierarchy is

TravelConnector
Passage
Stairway
StairwayDown
StairwayUp
ThroughPassage
Door
AutoClosingDoor
ExitOnlyPassage
PathPassage
SecretDoor
HiddenDoor
RoomConnector

OneWayRoomConnector
RoomAutoConnector
Room

DarkRoom
FloorlessRoom
OutdoorRoom
TravelMessage
NoTravelMessage
FakeConnector

AskConnector

Note that Passage also descends from Fixture, so that Passage and all its subclasses represent physical game
objects as well as connectors. This is not the case with RoomConnector and its descendants or TravelMessage and

its.

Note that TravelMessage also descends from TravelWithMessage.

There is also a ShipBoardRoom class that can be used as a mix-in class for other kinds of room.

Room and its subclasses have a number of methods and properties that it is sometimes useful to override, these

include:

atmospherelList
brightness
destName
enteringRoom
roomAfterAction
roomBeforeAction

roomParts

Page 18

TADS 3 Tour Guide

2.2. OutdoorRoom

We'll start our adventure outside a cave, so we'll begin by defining our first room thus:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'
"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"

atmospherelist : ShuffledEventList {

[
'\nA flight of birds disappears off to the west. ',

{: "\nA <<rand('small', 'large')>> <<rand('green', 'red', 'blue', 'black', 'white')>> car
pulls out of the car park and drives off to the north. " 1},

'\nAn aeroplane flies far overhead. ',

nil

’

We use the class OutdoorRoom for the obvious reason that it represents an outdoor location (with no walls, and with
ground and sky rather than floor and ceiling). Recall that we have already set the location property of the me object to
outsideCave so that the player character will begin here.

Remember that the Room template (which also applies to OutdoorRoom) allows this abbreviated form of definition:
the template is defined as ' roomName' 'destName'? 'name'? "desc"?; which means that the first single-
quoted string after the class name is the roomName property (the name that will be shown in the status line for the
room), the second (which is optional) the destName (the name by which the room will be referred to in an exit lister)
and the double-quoted string is the desc property (which will be displayed as the room description). If all these
properties are used, they must be used in the order defined by the template, and before any other properties are
defined for the room.

In other words, the definition:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'
"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"

is exactly equivalent to writing out in full:

outsideCave : OutdoorRoom

roomName = 'Parser Valley'
destName = 'Parser Valley'
desc = "To the north stretches the broad green Parser Valley under a clear blue sky,

past a small car park lying just off to the east. The main feature of

interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b

ENTRANCE TO THE\nEERHTSDAT CAVES\n"

At this point we should pause to consider the relation between some of these properties. The roomName is the room
title displayed in the room description and the status line; typically, this will be in title case (e.g. "Hall of the Mountain
King"). The destName is the title given to the room in the exit lister that appears in response to the 'exits' command, or
when you try to move in direction you can't go (e.g. "north, back to the hall of the mountain king"). The plain name
property is the title used by the parser to refer to the room when it features in commands (which can normally only
occur if the room is given vocabWords). By default name is defined as roomName.toLower, and destName is defined
as theName. Often this gives reasonable results, but you might often want to override it, as in this case where Parser
Valley is a proper name we want used both for the roomName and the destName.

Page 19

TADS 3 Tour Guide

We'll define one extra property for OutsideRoom at this point, namely its atmosphereList. If this is defined to hold a
Script object, the roomDaemon will automatically call its doScript method each turn; in practice this means we can
make it an anonymous nested object of a Script class. Here we use a ShuffledEventList to display a series of strings
in random order.

In order to vary the description of cars leaving the car park, we use the rand() function to choose both the size and the
colour of the car. When the rand function contains a list, it returns one item in the list chosen (notionally) at random. In
order to include the two uses of the rand function in the string, we have made it a double-quoted string using the <<>>
syntax. A double quoted string cannot be used as an element in the eventList property of an ShuffledEventList, but an
anonymous function can, and the double-quoted string can be printed within the anonymous function. When the
anonymous function consists of only a single statement, as here, we can use the short form syntax shown, i.e.

{: statement }

Note that the statement should then not be concluded with a semicolon.

2.3. FakeConnector

The room outsideCave was defined previously. Its description refers to a valley to the north and a car park to the east.
We do not want the Player Character to go wandering off in those directions, but there should be a reasonable
response to any attempts to do so; in particular the game should respond with a sensible message if the player types
the commands EAST or NORTH. The FakeConnector is just the job for this sort of situation, where we want to
provide a soft boundary. The two FakeConnectors to be added to the room definition are shown in bold.

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'

"To the north stretches the broad green Parser Valley under a clear blue sky,

past a small car park lying just off to the east. The main feature of

interest round here is the notorious Eerhtsdat Caves, the entrance to which

lies just to the south, marked by a large blue sign that proclaims, predictably

enough: \b

ENTRANCE TO THE\nEERHTSDAT CAVES\n"

north : FakeConnector { "You've come here to explore the caves, not the valley. " }

east : FakeConnector { "You've only just come from there -- you've no reason to go back just
now. " }

atmospherelList : ShuffledEventList ({

[

'A flight of birds disappears off to the west. ',

{: "A <<rand('small', 'large')>> <<rand('green', 'red', 'blue', 'black', 'white')>> car
pulls out of the car park and drives off to the north. " },

'An aeroplane flies far overhead. ',

nil

At this point you can compile and run the game to test that it is working properly.

Note that we once again use a template to abbreviate the business of writing the FakeConnector definition. The
property in double quotes that we are defining for each FakeConnector here is in fact its travelDesc property (defined
by the NoTravelMessage template, which FakeConnector inherits). This is called by the connector's showTravelDesc()
method only for the Player Character (so that, for example, the message will not be shown repeatedly if the PC is
being accompanied by one or more NPCs), while showTravelDesc() is in turn invoked by noteTraversal(traveler). The
last of these methods - noteTraversal - is defined for all TravelConnectors, whereas the other two - travelDesc and
showTravelDesc - are defined on TravelWithMessage and classes that descend from it.

The FakeConnector works very like the NoTravelMessage. The only difference is that a direction attached to a
NoTravelMessage won't be included in a list of exits (e.g. in response to an EXITS command, or in the status line),
whereas that attached to a FakeConnector will. A NoTravelMessage should therefore be used to explain why travel is
not possible in a direction in which it's reasonably apparent that travel isn't possible, while a FakeConnector should be
used to make travel apparently possible in a direction in which it isn' t really, e.g.. to provide a "soft boundary" to the
map.

Page 20

TADS 3 Tour Guide

2.4, DeadEndConnector

In the previous section we added a pair of FakeConnectors to prevent the player character from going wandering
north into the valley or east into the car park, although there's nothing physically preventing him from doing so. When
using the FakeConnectors for this purpose we basically blocked the PC from travelling north or east by providing him
motivational reasons for not doing so. The alternative would be allow him to do so, but then have him return to his
starting point (either because the way turns out to be blocked, or because the PC finds nothing of interest). So instead
of the FakeConnectors used in the previous section, we could use a pair of DeadEndConnectors thus:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'
"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"
north : DeadEndConnector { 'Parser Valley'
"You start to stride off into the valley, but soon decide it's not that interesting,

so you wander back towards the cave entrance. " }
east : DeadEndConnector { 'the car park'

"You go and wander round the car park for a few minutes, but decide you don't want to
leave just yet, so you return to the cave entrance. " }

atmospherelist : ShuffledEventList {
[
'A flight of birds disappears off to the west. ',

{: "A <<rand('small', 'large')>> <<rand('green', 'red', 'blue', 'black', 'white')>> car
pulls out of the car park and drives off to the north. " },

'An aeroplane flies far overhead. ',

nil

’

At first sight it may look as if we could have used a FakeConnector for this purpose and it would have done the job just
as well, and this is indeed almost the case. Nevertheless there are a couple of distinctions between FakeConnector
and DeadEndConnector that are worth observing, even if they may seem a bit subtle at first sight.

The first is that traveling via a DeadEndConnector triggers travel notifications while attempting to travel via a
FakeConnector does not. So, for example, suppose there was an NPC present who might react to our attempts to
walk away from the cave entrance; suppose that if we try to go in any direction except south into the cave she
(assuming a female NPC) objects and prevents our leaving (we'd implement this with a beforeTravel() method on the
NPC's current ActorState, but that's the sort of thing we'll be coming to some way ahead, so we shan't worry about the
details just now). If we used a FakeConnector to represent what happens when the PC tries to go north or east, then
we'd never see the NPC's protest. If we used a DeadEndConnector, however, the NPC's protest would be triggered,
and we'd see her protest in place of the message describing our wandering round the valley or car park. The first
case, using a FakeConnector, is appropriate in situations where the PC doesn't even attempt to travel and we're
simply displaying a message explaining why not; since the PC doesn't attempt to travel, there's no reason why anyone
or anything should react to his non-attempt. The second case is appropriate when the PC does (at least notionally)
attempt the travel, and where the message we display describes that (albeit simulated and circular) travel unless
something or someone acts to prevent it, such as our (for now) putative female companion who insists on our entering
the cave instead.

So, in brief:

» Use a FakeConnector to explain why your PC refuses to attempt travel in a direction in which travel would be
physically possible.

» Use a DeadEndConnector to simulate the effect of your PC travelling in a direction (which doesn't actually connect
to another location on your game map) and then returning to his starting point.

And now on to the second difference. If you look at the code we just changed, you'll see that we added a second
property in the DeadEndConnectors, just before the double-quoted strings describing the aborted walk into the valley

Page 21

TADS 3 Tour Guide

and car park. These extra properties are the single-quoted strings 'Parser Valley' and 'the car park', which name the
locations to which these connectors notionally lead (although in reality they lead nowhere and we aren't going to
implement a Parser Valley or car park location in our game). The property to which we are giving a value here is
called apparentDestName; the point of it is that the exit lister (shown in response to an explicit EXITS command or an
attempt to move in a direction for which no connector has been defined) will show these as the destinations that can
(notionally) be reached by travelling via the DeadEndConnector. For example, an EXITS command issued in our
starting location might generate the response:

Obvious exits lead north to Parser Valley, south, and east to the car park.

If you compile the game and try it out as it stands, however, you'll find these destination names appear only after the
PC has attempted to travel via these DeadEndConnectors. In some situations (namely where the PC doesn't know
where a connector leads till he tries traversing it) this may be just what we want. In this case, however, it's perfectly
obvious from where the PC's standing that the valley is to the north and the car park to the east, so ideally we'd like
these destination names to appear even before the PC attempts to travel. We can do this by overriding the
actorKnowsDestination method on the location to indicate which connectors the PC already knows the destinations
of even without travelling:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'

actorKnowsDestination (actor, conn)

{

return conn is in (east, north) ? true : inherited(actor, conn);

}

There are two further points to note about this. In the above method east and north are actually references to our two
DeadEndConnectors. Neither DeadEndConnector has a name of its own, so the only way of referring to them is via
the properties to which they are attached, namely outsideCave.north and outsideCave.east. Since, in this case, we
are referencing these properties from a method of outsideCave, we don't need to prepend the object name to them; in
this context they can be referred to simply as 'east' and 'north' meaning the TravelConnectors attached to the east and
north properties of the current object.

The second point is that we're not restricted to using actorKnowsDestination with DeadEndConnectors; the method
can be used to signal that the NPC already knows the destination of any kind of TravelConnector (including another
Room, if a direction property points straight to another Room, as is usually most often the case).

2.5. RoomConnector

So far we can't actually leave the starting location. We could simply define the next location and simply point to it from
the starting room, but in this case we want to make the tunnel into the cave subject to a rockfall that may block it (in
either direction). Once the player starts exploring the cave system, he or she will then have to find another way out.

An efficient way to perform this task is with a RoomConnector, since we can conditionally block passage through it.
We can define the appropriate RoomConnector thus:

entranceTunnel : RoomConnector
rooml = entranceCave
room2 = outsideCave

blocked = nil
canTravelerPass (traveler) { return !blocked; }
explainTravelBarrier (traveler)

{
"After a few paces down the tunnel it becomes all too clear
that it has been blocked by a recent rockfall, so there is

"

nothing for it but to turn round and go back. ";

}

’

The properties room1 and room2 define the two rooms that will be linked by this connector (note that we haven't
defined entranceCave as yet, so the game won't compile till we do). We define a custom blocked property to
determine whether or not the tunnel has been blocked by the rockfall. The canTravelerPass method (defined on all
TravelConnectors) determines whether a traveler can traverse this connector. In this case we want to allow travelers

Page 22

TADS 3 Tour Guide

to pass if the connector is not blocked, but not otherwise, so we simply returned !'blocked (i.e. not blocked). If travel is
forbidden the explainTravelBarrier method is invoked, so we define it to display an appropriate message in the event
that the tunnel is blocked.

Note that the tunnel is not represented as a physical object in the game (although it could have been): the
RoomConnector is an abstract object linking the two rooms (although in a sense it does duty for a representation of a
tunnel that can be blocked).

Note also that it will be necessary to make the appropriate direction properties of both outsideCave and entranceCave
point to this RoomConnector. We'll do that next.

2.6. asExit

The asExit() macro can be used when we want more than one direction to point to the same destination, but we only
want one of the directions to appear in the list of exits (the others effectively being synonyms). In the outsideCave
room the cave entrance is described as lying to the south, so that the Player might type either SOUTH or IN to enter it.
Here we'll make SOUTH the explicit way in and add handling for IN as a synonym using asExit:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'

"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"

north : FakeConnector { "You start to stride off into the valley, but soon
decide it's not that interesting, so you wander back towards the cave
entrance. " }
south = entranceTunnel
in asExit(south)
east : FakeConnector { "You go and wander round the car park for a few
minutes, but decide you don't want to leave just yet, so you return
to the cave entrance. " }
atmospherelist : ShuffledEventList ({
[
'A flight of birds disappears off to the west. ',

{: "A <<rand('small', 'large')>> <<rand('green', 'red', 'blue', 'black', 'white')>> car
pulls out of the car park and drives off to the north. " },

'An aeroplane flies far overhead. ',

nil

Once again, the new properties to be added are shown in bold. Note that we point the south property not to another
room, but to the previously defined RoomConnector, entranceTunnel.

2.7. Enterable

The room definition for outsideCave will work fine (once we have defined the entranceCave Room) if the player types
IN or SOUTH or even ENTER, but since the room description mentions a cave, the player may try to ENTER CAVE or
EXAMINE CAVE. To cover this possibility we should define a cave object and make it enterable:

+ Enterable ->entranceTunnel 'eerhtsdat cave/entrance/caves' 'cave'
"The entrance to the cave is large and welcoming; two large people could easily walk in
side by side without stooping. "

This definition uses the Enterable template.

Page 23

TADS 3 Tour Guide

We use the + syntax to locate this Enterable in outsideCave (so make sure its definition comes after that of
outsideCave and before anything else).

Since there is no need to refer to this object from anywhere else in our game code we can define it as an anonymous
object; there is no need to give it an object name, we simply use the class name (without a preceding colon).

Important Note.

Enterable, in common with EntryPortal, Exitable and ExitPortal, superficially resembles Passage-type objects like
ThroughPassage in that it represents a game object which one can go through and end up in a different location.
Unlike the various Passage objects (ThroughPassage, Door) etc., Enterable, Exitable, EntryPortal and ExitPortal are
not TravelConnectors and have none of the TravelConnector methods or properties. Also, unlike Passages and
Doors, they do not descend from Linkable, which means, for example, that an EntryPortal cannot be the masterObject
of an ExitPortal; these classes cannot be linked together as pairs pointing to each other.

Passages and Doors typically refer to other destinations through their otherSide or destination properties.

Enterable, EntryPortal, Exitable and ExitPortal refer to their destination through their connector property, which may
simply be set to the location you want an actor to end up in when entering or exiting such an object, but may instead
be set to a TravelConnector object.

2.8. Room

We can now define the second room in the game. Since this will be an interior room (albeit inside a cave rather than a
building) we'll make it of the Room class:

entranceCave : Room 'Entrance Cave' 'the entrance cave'
"Compared with the narrow tunnel leading out to the north, this
rough-walled cave seems positively spacious. A red sign fixed to
one wall suggests that the narrow tunnel is the only way back out to
the valley, while a blue sign next to it welcomes you to the cave.
Directly under the signs a narrow ledge has been carved into the
wall. There appear to be no other caves at this level, but a sturdy
steel ladder leads down through a large round hole in the floor. "

north = entranceTunnel
out asExit (north)

Note that the cave's north property points to the previously defined RoomConnector, and that we use the asExit macro
to allow OUT as a synonym for NORTH.

Once again, note the use of the Room template to define the common properties of this Room. The first single-quoted
string, 'Entrance Cave' is the name of the Room. The second 'the entrance cave' (which is optional - we could just
leave it out) is its destName (the name that will appear in exit listings). The double quoted string that follows, "This
large cave... " is the room description.

Although this is an underground cave, we assume it will be permanently lit by some means or other. In more complex
situations you might want to override the brightness property to vary according to circumstance (as is exemplified in
the definition of the secretPassage, which comes later).

At this point it should be possible to compile and test the game once more.

Page 24

TADS 3 Tour Guide

2.9. StairwayDown

The description of entranceCave refers to a sturdy steel ladder leading down through a hole in the floor. This ladder is
best implemented as a stairwayDown, which is both a physical game object that can be examined and a
TravelConnector that can be traversed, by CLIMB and CLIMB DOWN commands. The ladder can simply be defined
as:

+ downLadder : StairwayDown 'sturdy steel ladder' 'sturdy steel ladder'
"The ladder leads down through a large hole in the floor. "

’

Here we are simply using the standard Thing template, although since StairwayDown inherits (indirectly) from
Passage, it can also use the Passage template.

We can then add a down property to the room definition to point to this connector:

entranceCave : Room 'Entrance Cave' 'the entrance cave'
"This is the main cave. A large rock rests against the north wall and
there are other caves to south and east, but the way west is blocked by
a huge boulder. A blazing torch is fixed to the wall, next to a sturdy
steel ladder leading upwards. "
north = entranceTunnel
out asExit (north)
down = downLadder

’

Note that as yet nothing defines where we end up when we go down the ladder. This is because there will be a
corresponding StairwayUp in the cave below, and the StairwayUp will point to downLadder as its masterObject. The
game will automatically link the StairwayUp to its masterObject and vice versa, so that when we traverse the
StairwayDown it will know that its destination is in the corresponding StairwayUp's location. (We could equally well do
this the other way round and make the StairwayUp the masterObiject of the StairwayDown).

2.10. StairwayUp

We first need to add a minimal definition of the room in which we'll put the bottom end of the ladder:

mainCave: Room 'Large Cave'
"The flickering orange light from the blazing torch fixed to the wall
accentuates the naturally ruddy hues of this large, irregular cave,
which seems to be something of a major hub in the cave system. A
large rock rests against the wall to the north.
A sturdy steel ladder leading upwards. "

up = uplLadder

’

The main thing to note here is that we point the up property of the room to the upLadder object we're about to define,
so that in can be traversed either in response to an UP command, or in response to a CLIMB (UP) LADDER
command. We next define the basic upLadder object (using the Passage template):

+ upladder : StairwayUp ->downLadder
'sturdy steel ladder' 'sturdy steel ladder'
"The ladder leads up through a hole in the ceiling. "

’

The one thing to note here is the use of the -> in the template syntax to link the upLadder to its masterObject, the
corresponding StairwayDown, downLadder. The two Stairway objects are now linked so that traversing one will take
us to the location of the other (we could equally well have done this the other way round by having downLadder point
to upLadder as its master object, although we would not want both of them pointing to each other).

Either way, our ladder will work fine, but now we want to add a refinement. Remember when we defined the
entranceTunnel RoomConnector we gave it a blocked property to simulate the effect of a rockfall? Well, now we want

Page 25

TADS 3 Tour Guide

to trigger the rockfall the first time the PC climbs the ladder back to the entranceCave. We could do this by overriding
the stairwayUp's noteTraversal method, perhaps along the following lines (using an additional climbed property we
define to make sure that the rockfall occurs only once):

+ upLadder : StairwayUp ->downLadder
'sturdy steel ladder' 'sturdy steel ladder'
"The ladder leads up through a hole in the ceiling. "
noteTraversal (traveler)
{
if (!'climbed)
{
"As you climb the ladder you hear what sounds like a thunderous rockfall
up above. ";
entranceTunnel .blocked = true;
climbed = true;
}

}
climbed = nil

’

There is no reason why we should not do it this way, but since we want to explore as much of the library as possible,
we'll next look at another way of doing it using TravelWithMessage.

211. TravelWithMessage

TravelWithMessage is a mix-in class for use with TravelConnectors (note that some descendents of TravelConnector -
TravelMessage, NoTravelMessage and FakeConnector - include TravelWithMessage in their definition in any case).
TravelConnector overrrides noteTraversal(traveler) to call showTravelDesc(), which in turn calls either travelDesc (if
the Player Character is doing the traveling) or npcTravelDesc (if an NPC is doing the traveling).

Firstly, we'll add TravelWithMessage to the upLadder's class list so that we can use its travelDesc property. We take
advantage of the fact that this will call upLadder's doScript method provided that it also inherits from the Script class or
one of its descendents. In this case we'll use the StopEventList class with two items in its eventList. The first time the
PC traverses the upLadder the first event in the eventList will be fired, and thereafter the second one will (defining with
the Passage template):

+ upladder : TravelWithMessage, StairwayUp, StopEventList ->downLadder
'sturdy steel ladder' 'sturdy steel ladder'
"The ladder leads up through a hole in the ceiling. "
eventList =

[

new function

{
"As you climb the ladder you hear what sounds like a thunderous rockfall
up above. ";
entranceTunnel .blocked = true;

},
'You climb the ladder again. '

’

This takes advantage of the fact that an eventList can contain, inter alia, single-quoted strings (such as "You climb the
ladder again. '), which will just be displayed, or anonymous function pointers, in which case the anonymous function
will be executed. To create an anonymous function containing more than one statement, as we wish to do here, we
have to use the new function syntax:

new function

{
statementl,;
statement?2;

Page 26

TADS 3 Tour Guide

In this case the function simply prints an appropriate message about the rockfall and sets entranceTunnel's blocked
property to true.

You can now recompile and test the game so far.

2.12. SecretDoor

The description of mainCave includes a rock to the north. We'll make this a secret door that reveals a secret passage
behind when it is pushed to one side (using the Thing template):

+ rock: SecretDoor 'large rock' 'rock'
"A large rock <<isOpen ? 'lies to one side of a passage beyond'
'leans against the north wall of the cave'>> . "
dobjFor (Push)
{
verify () {}
action ()
{
makeOpen (!isOpen) ;
"The rock rolls aside. ";

Note that this needs to be defined just after mainCave, so that it is included in mainCave's contents. Note also that we
need to add the following to the definition of mainCave:

north = rock

The passage is opened by pushing the rock to one side, so we override the action() part of dobjFor(Push) to bring
about the desired behaviour. SecretDoor descends from BasicDoor, which defines makeOpen(stat) method; this
method sets the isOpen property to stat, which should be either true (for open) or nil (for closed). To make pushing the
rock open the passage if it is closed, and close it if it is open, we call makeOpen (! isOpen). We also test the isOpen
property to provide a description of the rock that depends on its position.

We next need to define the location on the far side of the rock:

secretPassage : Room 'Secret Passage' 'the secret passage'
"This hitherto secret passage narrows to a long tunnel runnng north. To the
south <<rock2.isOpen ? 'an opening leads out into a large, ruddy-hued cave'
'a large rock blocks the way out'>>. "
south = rock2
north = tunnel
brightness = (rock2.isOpen ? 3 : 0)

’

/* This rock is simply the other side of the rock defined in mainCave
* In this definition we use the Passage template

*/

+ rock2 : SecretDoor -> rock 'large rock' 'large rock'
"It's a large rock, too heavy to lift. "
dobjFor (Push)
{
verify () {}
action ()
{
makeOpen (!isOpen) ;
"The rock rolls aside. ";

The second rock (rock?2) is simply the first rock seen from the other side; we link it to the rock with -> which defines the
Page 27

TADS 3 Tour Guide

masterObject property. Otherwise everything behaves much the same as the rock, except that for variety we vary the
description of rock2 in the room description.

A further refinement we can make is to have the illumination of the secretPassage room depend on the boulder's
being pushed aside. If light enters the passage only through the exit into the startCave, then pushing the boulder shut
while inside the secretPassage will cut off the light. To accomplish this we override the brightness property of
secretPassage to vary according to whether the boulder is open or not.

2.13. ThroughPassage

The secretPassage room refers to a tunnel leading north. The tunnel itself isn't an interesting location, it's simply a
route for getting elsewhere. The player may however try to refer to it, so we can usefully implement it as a
ThroughPassage - something that you can ENTER or GO THROUGH and that takes you directly to its destination.
This time we shan't implement a corresponding Passage object at the other end, so we need to set the tunnel's
destination property to the room where we'll end up if we traverse the tunnel, the yet-to-be defined smallCave room.

Since we envisage this as quite a long tunnel, however, we could display a message representing the long walk down
it when we travel through it; this could be achieved simply by overriding noteTraversal, but instead we'll take the
opportunity to illustrate a simpler use of TravelWithMessage. All we need to do is to override travelDesc with the
message we want displayed.

+ tunnel : TravelWithMessage, ThroughPassage 'tunnel' 'tunnel'
"The dark tunnel looks large enough for a single person to
walk through. "

travelDesc = "You walk down the tunnel for some way and finally
arrive in a small cave. "
destination = smallCave

Since the tunnel is described as running north from the secretPassage, the player may simply type N or NORTH to
enter it, so we need to add the following to the definition of secretRoom:

north = tunnel

We could also use a couple of anonymous ThroughPassage objects to represent the tunnel and the hole that are
mentioned in the description of the entranceCave. At first sight there may seem to be a problem with this: we don't
want GO THROUGH TUNNEL to bypass the RoomConnector we've set up for returning to the valley, and we'd
probably want GO THROUGH HOLE to be equivalent to CLIMB DOWN LADDER. The easiest answer here is
probably to remap the TravelVia of both ThroughPassages to the connectors we actually want employed:

+ ThroughPassage 'large hole' 'large hole'

"The hole is easily large enough for even a portly giant to pass through.
Looking through it you can see a large, rough cave below, lit by the flickering
flames of a torch. "

dobjFor (LookThrough) asDobjFor (Examine)

dobjFor (TravelVia) remapTo (TravelVia, downLadder)

+ ThroughPassage 'narrow tunnel' 'narrow tunnel’
"The tunnel evidently tapers from the outside to the inside, since
the end of the tunnel visible from here is quite narrow. "
dobjFor (TravelVia) remapTo (TravelVia, entranceTunnel);

’

Obviously, you should make sure that both these objects are located in entranceCave.

Page 28

TADS 3 Tour Guide

2.14. DarkRoom

Since by the time we end up at the end of the tunnel north from the secret passage we're now some way from the
well-lit mainCave, it would not be surprising if we were now totally in the dark. We could simply override the brightness
property to be 0 in the smallCave, but instead we'll make it a DarkRoom, which does this for us (using the Room

template):

smallCave : DarkRoom 'Small Cave' 'the small cave'
"The long narrow tunnel from the south comes to an end in this cramped,
sandy-floored cave, whose rough rocky walls press in claustrophically
on every side. Anyone much taller than average would have to stoop here. "

’

You can now compile the program and test it, but you'll quickly find that not only is there no way out of smallCave, but
there's as yet no way of bringing any light to it. While developing a game it would obviously be useful to be able to test
dark locations without necessarily having to use the methods the player will be obliged to use (either because you
simply haven't implemented them yet, or because you don't want to have to go through the business of procuring the
light source each time you want to test a new dark location). What would be useful is some way of producing light on
demand while testing, and the way to do that is to provide a means of adjusting the brightness property of the Player
Character object (i.e. allow the PC to be its own light source, so that it does not need to carry one). You could
download Nikos Chantziaras's ncDebugActions.t library extension and use that, since it provides a number of useful
debugging verbs, including MEGA and UNMEGA which (amongst other things) turns the plaver into a light source and
back again. If for any reason you have any difficulty in acquiring this file, (which you should be able to obtain from the
if-archive at http://www.ifarchive.org/indexes/if-archive XprogrammingXtads3XlibraryXcontributions.html) you can get a
similar effect by including the following in your own code, perhaps out of the way at the end of the file:

#ifdef _ DEBUG

DefineIAction (FiatLux)
execAction
{
if (gPlayerChar.brightness == 0)
{
"You start to glow!\n";
gPlayerChar.brightness = 3;
}
else
{
"Repeating the spell reverses its effect, and your glowing aura disappears. ";
gPlayerChar.brightness = 0;
}
}

’

VerbRule (FiatLux)

'fiat' 'lux'

: FiatLuxAction

verbPhrase = 'make/making light'
fendif

You don't have to call it Fiat Lux, of course, you can call it anything convenient you like, but whatever you call it it's
worth enclosing it between #ifdef _ DEBUG (note the double underscore before DEBUG) and #endif so that this
cheating verb won't be available in the release version of your game. In the debug version, however, you'll be able to
type FIAT LUX (or whatever you define the command to be) to make the player character a light source, and the same
command again to reverse the spell.

2.15. TravelMessage

Up to this point, you can get into the small cave but not out of it again. This time we won't explicity mention the tunnel
in the room description or implement it as an object, but we might want to mention the walk down the tunnel when the
Page 29

http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3XlibraryXcontributions.html

TADS 3 Tour Guide
PC travels south. The simplest way to do that is with a TravelMessage. We do not need to define this as a separate
object, it can simply be an anonymous nested object attached to the south property of smallCave:

smallCave : DarkRoom 'Small Cave' 'the small cave'
"The long narrow tunnel from the south comes to an end in this cramped,
sandy-floored cave, whose rough rocky walls press in claustrophically
on every side. Anyone much taller than average would have to stoop here. "
south : TravelMessage
{
-> secretPassage
"You walk south for quite some way down a long tunnel. ";

}

This time, we have used the TravelMessage template to simply the definition here. The first template property here, ->
secretPassage, is in fact the destination property of the TravelMessage, while the second, the double-quoted string,
is its travelDesc property (defined on TravelWithDesc, from which TravelDesc inherits).

2.16. RoomAutoConnector

RoomAutoConnector is not a class that you're ever likely to use explicitly, but implicitly you'll probably use it a great
deal, since it is one of the classes from which Room inherits. It is RoomAutoConnector that provides the behaviour
that allows a Room to be used as a connector to itself. This may sound a little arcane, but in practice this is what
allows us to define travel between rooms without explicitly having to define any explicit TravelConnector objects
unless we need them for their side-effects. Since a Room is also a RoomAutoConnector, we can use as the value of
another Room's direction properties to implement direct travel between rooms. For example:

anotherCave: Room 'Another Cave'
"There's something artificial about this cave. It's almost as if it's trying
to be a room. The floor is suspiciously level, the walls are almost
smooth, and there's a smart new door set into the south wall, with a
bright electric light mounted above it. The rougher, larger central
cave lies to the north. "
north = mainCave

To make anotherCave reachable from mainCave, we must similarly add

south = anotherCave

to the definition of mainCave, which should now look like:

mainCave: Room 'Large Cave'
"The flickering orange light from the blazing torch fixed to the wall
accentuates the naturally ruddy hues of this large, irregular cave,
which seems to be something of a major hub in the cave system. A
large rock rests against the wall to the north, other caves lie
through exits to east and south, while the way west is blocked by
a huge boulder. A sturdy steel ladder leads up through a hole in the roof."
north = rock
south = anotherCave
up = uplLadder

2.17. Door

A basic door is easy to implement; here we'll illustrate a simple double-sided door by placing one between
anotherCave and a room to the south that we'll call lakeShore. We point the south property of anotherCave to one
side of the door (lakeDoor), the north property of lakeShore to the other side of the door (lakeDoor2) and make sure
that one side of the door (lakeDoor2) points to the other side (lakeDoor) as its masterObject. Door inherits from
Passage and hence from Thing; we use the Thing template for lakeDoor and the Passage template for lakeDoor2:
Page 30

TADS 3 Tour Guide

anotherCave: Room 'Another Cave'
"There's something artificial about this cave. It's almost as if it's trying
to be a room. The floor is suspiciously level, the walls are almost
smooth, and there's a smart new door set into the south wall, with a
bright electric light mounted above it. The rougher, larger central
cave lies to the north. "
north = mainCave
south = lakeDoor

7
+ lakeDoor : Door 'smart new door' 'smart new door';

lakeRoom: Room 'Lake Shore'
"This is the northern shore of a giant underground lake. A door leads north. "
north = lakeDoor2

+ lakeDoor2 : Door ->lakeDoor 'door' 'door';

Later, we'll make this more interesting by adding a special kind of lock to the door.

2.18. BasicDoor

A BasicDoor encapsulates the behaviour common to both Door and SecretDoor and their descendents, and is thus
intended as an abstract class containing the common behaviour of door-like objects, rather than as a class that a
game author would use directly in a game. If you wanted to a special kind of door that didn't fit either Door or
SecretDoor (and their descendents) you might want to derive it from this class.

The framework provided by BasicDoor does the following:

» Provides a getFacets routine which makes both sides of a BasicDoor facets of each other (assuming one of the
doors points to the other as its other side).

» Overrided makeOpen to keep both sides of a BasicDoor in sync with each other when one side is opened or closed.

» Provides routines for noting and describing a remote opening of the door (to cope with the situation where a door is
opened or closed from the other side from that on which the player character is on).

» Provides handling for executing TravelVia the BasicDoor

» Boost the likelihood that this door is the object of commands like LOCK or CLOSE fif this is the last door-like object
the PC has traversed.

2.19. NoTravelMessage

We have described the lakeShore room as being on the northern shore of a giant underground lake. This means that
it should be fairly apparent that the PC cannot proceed south. In this situation we may want to display a custom
message if the player nevertheless attempts to walk out onto the lake; a NoTravelMessage will perform this role (using
the NoTravelMessage template):

lakeRoom: Room 'Lake Shore'
"This is the northern shore of a giant underground lake. A door leads north. "
north = lakeDoor2
south : NoTravelMessage { "You never learnt to walk on water. " }
southeast asExit (south)
southwest asExit (south)

’

This is very similar to a FakeConnector. The only difference is a direction attached to a NoTravelMessage won't be
included in a list of exits (e.g. in response to an EXITS command, or in the status line), whereas that attached to a
FakeConnector will. A NoTravelMessage should therefore be used to explain why travel is not possible in a direction
in which it's reasonably apparent that travel isn't possible, while a FakeConnector should be used to make travel
apparently possible in a direction in which it isn' t really, e.g.. to provide a "soft boundary" to the map.

Page 31

TADS 3 Tour Guide

2.20. ExitOnlyPassage

An ExitOnlyPassage is designed for one-way travel into a room, the other side of a passage through which you can
pass but by which you cannot return. For example, imagine you have a slippery chute leading down from one cave to
another below it. In the upper cave the chute might be represented by a ThroughPassage that the Player Character
can enter; in the lower cave, the other end of the chute, which ejects the PC into the lower cave but can't be climbed
back up could be implemented as an ExitOnlyPassage. To illustrate this we'll add four more objects: a round cave to
the west of mainCave to act as the start of the chute, a long cave underneath to act as the destination of the chute,
and the two halves of the chute, one in each location:

roundCave : DarkRoom 'Round Cave' 'the round cave'
"This round, rocky cave has a narrow exit to the east and a strange square
hole in the floor. "
east = mainCave
down = squareHole

+ squareHole : TravelWithMessage, ThroughPassage 'square hole/chute' 'square hole'
"The hole is just about large enough for one person to fit through. A glint
of something metallic can be seen just through the hole. "
travelDesc = "You find yourself sliding down a long, slippery metal chute;
After a short ride you are ejected into another cave. "

’

longCave : DarkRoom 'Long Cave' 'the long cave'
"This long narrow cave runs from east to west between rough walls and
a low ceiling. There is a large square hole in the west wall, while
a ladder fixed to the wall at the east end runs up to a trapdoor
set in the ceiling. Some words have been crudely scratched on the

south wall. "
west : NoTravelMessage { "You can't climb back up the chute, it's
too slippery. " }
+ ExitOnlyPassage -> squareHole 'square hole/chute' 'square hole'

"Through the square hole you can see the bottom end of the shiny metal
chute, which is too slippery to climb back up. "

One other thing we need to add before this can be tested is

west = roundCave
to mainCave.

Note that we don't need to give the ExitOnlyPassage a hame; we simply point it to the squareHole with the -> symbol
in the Passage template to connect the two halves of the chute together; in the Passage template the -> references
the masterObject property. Note also the use of a NoTravelMessage to explain why we can't climb back up the chute if
we try to go west, and of the TravelWithMessage mix-in class used with the ThroughPassage to provide a description
of the descent via the chute.

You can compile and run this, but you'll need to use MEGA or FIAT LUX to see what you're doing in the dark rooms.

2.21. AutoClosingDoor

So far we've provided a way of getting into the long cave, but no way of getting out. Let's suppose that the way back
up is also a one-way trip, via a trapdoor in the ceiling that closes each time you go through it. This would be a good
example of an AutoClosingDoor. The other (top) side of the trapdoor could be another ExitOnlyPassage, since we
don't want to allow the trapdoor to be opened from the upper cave (we want to force the player to use the chute we've
so carefully implemented). We'll have the trapdoor open into yet another new room, a square cave to the east of
mainCave:

Page 32

TADS 3 Tour Guide

longCave : DarkRoom 'Long Cave' 'the long cave'
"This long narrow cave runs from east to west between rough walls and
a low ceiling. There is a large square hole in the west wall, while
a ladder fixed to the wall at the east end runs up to a trapdoor
set in the ceiling. Some words have been crudely scratched on the

south wall. "
west : NoTravelMessage { "You can't climb back up the chute, it's
too slippery. " }

up = longCaveladder

+ ExitOnlyPassage -> squareHole 'square hole/chute' 'square hole'
"Through the square hole you can see the bottom end of the shiny metal
chute, which is too slippery to climb back up. "

+ longCaveladder: StairwayUp 'ladder' 'ladder'
"The ladder fixed to the east wall leads up to a trapdoor in the ceiling. "
dobjFor (TravelVia) remapTo (TravelVia, trapdoor)

’

+ trapdoor : AutoClosingDoor 'trap trapdoor/door' 'trapdoor';

squareCave : DarkRoom 'Square Cave' 'the square cave'
"This large square cave boasts a solitary exit to the west. "
west = mainCave

’

+ ExitOnlyPassage -> trapdoor 'trap trapdoor/door' 'trapdoor'
"You can hardly see the trapdoor from this side, and there is no means to
pull it open. "

The other thing to note here is the way we've handled the ladder. We've made it a StairwayUp to allow it to be
climbed, but it is actually the trapdoor rather than the ladder that must be traversed to reach the square cave above.
There's no easy way to make the trapdoor the destination of the ladder and the other side of the trapdoor the
destination of its underside. It's far easier to make traversing (i.e. climbing) the ladder equivalent to traversing (i.e.
going through) the trapdoor. However such actions may be described by the player (CLIMB LADDER, CLIMB UP
LADDER, ENTER TRAPDOOR, GO THROUGH TRAPDOOR) they'll end up being mapped to TravelVia actions
internally. We can therefore simply redirect a TravelVia action on the ladder to a TravelVia action on the trapdoor,
which we do using the dobjFor and remapTo macros.

Don't forget to add east = squarecave to the definition of mainCave. Then you can recompile and test the game
once more.

Here the trapdoor uses the Thing template and the ExitOnlyPassage the Passage template.

TADS 3.0.9 defines a new method on AutoClosingDoor, reportAutoClose(), which can be customised if we want an
AutoClosingDoor to report its automatic closing in anything other than the default way. Suppose, for example, that
when the player character goes through the trapdoor, instead of the standard "After you go through the trapdoor, it
closes behind you" we want it to say, "After you emerge through the trapdoor, it slams shut behind you". You can
achieve this by redefining the trapdoor thus:

+ trapdoor : AutoClosingDoor 'trap trapdoor/door' 'trapdoor'
reportAutoClose = "<.p>After {you/he} emerge{s} through the trapdoor, it slams
shut behind {it actor/him}. "

’

If you want an AutoClosingDoor to close silently (i.e. without any report at all), you can simply override
reportAutoClose() to do nothing.

Page 33

TADS 3 Tour Guide

2.22. OneWayRoomConnector

Probably the most common use for a OneWayRoomConnector is to impose some kind of condition on traveling from
one room to a second (but not the other way, or at least not symmetrically, which would call for a RoomConnector). In
this situation a OneWayRoomConnector can be used as a nested anonymous object on one of the first room's
direction properties, its canTravelerPass method overridden to define the conditions under which travel is possible,
and its explainTravelBarrier method overridden to explain why travel isn't possible, if canTravelerPass disallows it.
Travel via the OneWayRoomConnector is allowed if canTravelerPass returns true and prevented if it returns nil. Only
in the latter case is canTravelerPass invoked to display the reason why travel has been blocked.

For example, the description of mainCave refers to a huge boulder blocking the exit to the west. Later, we'll implement
a way of removing this obstacle by blowing it up with a stick of dynamite - so this isn't an obstacle that can readily be
implemented as a SecretDoor, like the rock to the north. Instead, we could add a OneWayRoomConnector to check
whether the boulder is present, and simply disallow travel west if it is:

mainCave: Room 'Large Cave'

"The flickering orange light from the blazing torch fixed to the wall
accentuates the naturally ruddy hues of this large, irregular cave,
which seems to be something of a major hub in the cave system. A
large rock rests against the wall to the north, other caves lie
through an archway to the east and an opening to the south, while
<<boulder.moved ? 'a passage has been opened up to the west' : 'the
way west is blocked by a huge boulder'>>. A sturdy steel ladder leads
up through a hole in the roof. "

north = rock

south = anotherCave

west : OneWayRoomConnector

{
->roundCave
canTravelerPass (traveler) { return boulder.moved; }
explainTravelBarrier (traveler)
{ "The huge boulder is in the way. "; }

}
east = squareCave
up = uplLadder

’

+ boulder : Thing 'boulder' 'boulder'
initDesc = "The huge boulder is blocking the exit to the west.

n

’

In this case the OneWayRoomConnector template simply defines the -> property as the destination property, so -
>roundCave means that roundCave is where we end up when travel is allowed via this connector. Since the only way
into the roundCave is by going west from mainCave, we do not need to impose a similar check on travel the other way
round; although the boulder would prevent egress from roundCave to mainCave, while the boulder is in place the
player character cannot get into roundCave so the situation will never arise.

We have temporarily given a minimal definition of boulder simply as a Thing so that it can readily be removed to allow
access to the roundCave. We shall change this when we come to implement the means of blowing it up. Note the use
of initDesc to give an appropriate description of the boulder before it is moved, and the alteration to the room
description so that it changes when the boulder is removed.

2.23. PathPassage

A PathPassage is intended for use as an outdoor passage such as a road or path that is not enclosed. It is basically
the same as a ThroughPassage apart from the way that travel via it is described (when an actor other than the PC
goes along it). Another, and perhaps more interesting, feature of the PathPassage is that the English Language
extensions to the library understand the command TAKE PATH in the sense of 'walk along the path' instead of 'pick up
the path'. We can try this out by adding a short path along the side of the lake:

Page 34

TADS 3 Tour Guide
lakeRoom: Room 'Lake Shore' 'the lake shore'
"This is the northern shore of a giant underground lake. A door leads north,
and a path runs a short way east. "
north = lakeDoor2
south : NoTravelMessage { "You never learnt to walk on water. " }
southeast asExit (south)
southwest asExit (south)
east = lakePath

+ lakeDoor2 : Door ->lakeDoor 'door' 'door';

+ lakePath : PathPassage 'short eastward rocky lakeside path' 'short lakeside path'
"The rocky path runs short way along the side of the lake. "

’

pathEnd : OutdoorRoom 'End of Lakeside Path' 'the end of the path'
"The path from the west comes to an end just here, on the northern
shore of the great underground lake. "
west = lakePath2
south : NoTravelMessage { "The lake is in the way. " }

’

+ lakePath2 : PathPassage ->lakePath 'westward lakeside path' 'westward path'
"The path leads off along the shore of the lake to the west. "

’

If you compile and run the game, you should be able to type SOUTH, DOWN, SOUTH, SOUTH (as four separate
commands) to arrive at the lakeside. From there you can type TAKE PATH to travel to pathEnd. Typing TAKE PATH a
second time will return you to lakeRoom.

Note that PathPassage uses the same templates as Passage.

The PathPassage class provides a convenient opportunity to introduce another library feature, albeit one that's only
tangentially related. In English, the expression TAKE PATH can mean FOLLOW PATH (i.e. go down the path, travel
via the path), and hence the English language part of the library defines:

modify PathPassage
/* treat "take path" the same as "enter path" or "go through path" */
dobjFor (Take) remapTo (TravelVia, self)

’

The problem with this is that while TAKE PATH might mean FOLLOW PATH, GET PATH or PICK UP PATH do not,
and yet all three forms of the command will match TakeAction. It's true that the commands GET PATH or PICK PATH
UP don't make much sense, but it may still be a bit puzzling to players if they're treated as instructions to wander
down the path. What we'd really like here is a means of distinguishing between TAKE PATH on the one hand and
GET PATH or PICK PATH UP on the other. In other words, it would be helpful to know what phrasing the player used
in actually issuing the command in this particular case, without going to the trouble of having to create a separate
GetAction which would be treated as equivalent to TakeAction in 98% of cases.

As from TADS 3.0.10 the library provides a solution to this in the form of an action method getEnteredVerbPhrase().
We can call this on gAction to return a string containg the exact verb phrasing, but with the direct and (if present)
indirect objects replaced with the placeholder tokens '(dobj)' and '(obj)'. So, for an example, if the player had typed
PUT BIG RED BALL IN THE SMALL PLASTIC BUCKET, gAction.getEnteredVerbPhrase would return the string 'put
(dobj) in (iobj)', which shows us the structure of the command used without worrying about the wording used to
described the objects involved, and without worrying about whether the player typed the command in lower case or
upper case or a mixture of the two, since getEnteredVergPhrase returns a string converted entirely to lower case (if
we actually wanted the full original phrasing of the command we could use gAction.getOrigText() instead).

We could use getEnteredVerbPhrase to distinguish between TAKE PATH and GET PATH or PICK UP PATH:

modify PathPassage
dobjFor (Take)
{

remap ()
{
if (gAction.getEnteredVerbPhrase == 'take (dobj)"')
return [TravelViaAction, self];
else

Page 35

TADS 3 Tour Guide
return nil;

}

Note that in this case we couldn't use the maybeRemapTo macro, since if the condition failed we'd get the inherited
handling, which remaps Take to TravelVia unconditionally, thus defeating the object of the modification. In other
cases, however, we could use maybeRemapTo. For example, we might want TAKE PILL to be remapped to EAT
PILL, but not GET PILL or PICK UP PILL:

pill: Edible 'little green pill*pills' 'little green pill'
dobjFor (Take) maybeRemapTo (gAction.getEnteredVerbPhrase == 'take (dobj)', Eat, self)

dobjFor (Eat)
{

action ()

{
"It tastes absolutely vile -- which presumably means that it's meant to be good for you.
You force yourself to swallow it nonetheless. ";
inherited;

’

In this case the remap to EAT PILL will work whether the player types TAKE PILL or TAKE THE GREEN PILL or
TAKE LITTLE GREEN PILL or any other such combination.

2.24. Shipboard

Shipboard is a mix-in class that can be added to other room classes to indicate that shipboard directions (port,
starboard, fore and aft) are meaningful in such locations. Clearly, the principal use of this class will be when
constructing locations aboard a ship.

To illustrate the use of this class, we first need a ship. Fortunately, we already have a lake we can float it on, so we
can begin by defining it thus:

ship : Enterable ->portDeck 'large wooden sailing ship' 'ship' @lakeRoom
"It's a large wooden sailing ship, close enough to the shore to board. "

specialDesc = "A large wooden ship floats on the lake, just by the shore. "
dobjFor (Board) asDobjFor (Enter)
getFacets { return [leaveShip]; }

’

There are a number of points to note about this short definition. The first is the use of the @ notation as an alternative
means of specifying the ship's initial location. Although the ship is notionally on the lake, we in fact place it in
lakeRoom since we want it to be visible and enterable from there (before it moves). However, since we always want
the ship to be described as floating on the lake, we add a specialDesc to that effect; this is how the ship will then
always be described when listed in room descriptions. Although the ship will not always remain in this location, it will
always be in some location close to the shore, and our description is sufficiently general to cover that. Next, a player is
as likely to type BOARD SHIP as ENTER SHIP in order to enter the vessel, so we add dobjFor(Board)
asDobjFor(Enter) to make BOARD equivalent to ENTER here. Finally, we'll assume that on boarding the ship we
arrive on the port deck, so we use the -> notation of the Enterable template to indicate that portDeck is the location
this Enterable takes us to. We'll explain the mysterious getFacets in just a minute.

We next need to define the portDeck location. Since there'll be several other deck locations, all of which will use the
Shipboard mix-in class, we can save ourselves a bit of typing if we first define a custom Deck class:

class Deck : Shipboard, OutdoorRoom;

We can then define the portDeck thus:

portDeck : Deck 'Port Deck' 'the main deck'
"This part of the main deck is on the port side of the ship, close to the shore. The
deck continues to fore, aft and starboard, and a tall mast towers up from

Page 36

TADS 3 Tour Guide
the middle of the main deck. "
fore = foreDeck
aft = quarterDeck
starboard = starboardDeck
out = (ship.location)
up = mast

’

We'll be defining the destinations referred to shortly; for now the only one to note is that attached to the out property.
This is set to (ship.location) so that whenever we type OUT from portDeck we'll end up in whatever location the ship
object is in; this provides an easy way of moving the entire ship. But of course, just as players may type BOARD SHIP
to enter the ship, they may also want to type LEAVE SHIP or GET OUT OF SHIP to disembark. The way to handle
this is to provide at EXITABLE object for SHIP to refer to in these circumstances:

+ leaveShip : Exitable ->(ship.location) 'ship' 'ship'
"It's a large wooden sailing vessel, which stretches fore, aft and to starboard of
the port deck. "
getFacets { return [ship]; }

’

Note that (ship.location) needs to be enclosed in parentheses when using the template ->connector syntax here, since
it is an expression. Otherwise, the Exitable behaves pretty much the same way as the Enterable we encountered
before (except that it handles EXIT so-and-so instead of ENTER so-and-so). The main point to note here is the use of
the getFacets method. The point of this is that although they are separate programming objects, both ship and
leaveShip refer to the same physical object. In this case the two programming objects could be regarded as two
different facets of the same ship seen from the shore or from its port deck. The getFacets method, which returns a list
of the other facets of an object, is the means by which we can specify this relation to the parser. The practical effect of
this is that the player can type BOARD SHIP followed by LEAVE IT, and the parser will be able to work out that IT
should now refer to the leaveShip object. Without the use of getFacets the LEAVE IT command would fail, since the
original ship would no longer be in scope to be the object of the LEAVE command, and would not handle the
command properly even if it were. Note that for doors and other passage-like objects that the library recognizes as
double-sided entities this getFacets mechanism is automatically set up by the library, so it is only in less standard
contexts such as the present one that game authors need to worry about it.

With these complications out of the way, the definition of the starboard part of the deck is fairly straightforward:

starboardDeck : Deck 'Starboard Deck' 'the main deck'

"From the starboard side of the ship there's a clear view over the lake as far as
the eye can see to starboard. The deck continues forward, aft and to port, and a
tall mast rises up from the centre of the main deck. "
port = portDeck
fore = foreDeck
aft = quarterDeck
up = mast

’

The foreDeck and quarterDeck would be even more straightforward but for one complication. The way we have
defined our ship, the main deck straddles its central portion and is divided into a port side and a starboard side. Going
aft from either side takes us to the quarterDeck, which going foreward from either side takes us to the foreDeck. So
where should we end up if we come aft from the foreDeck or forward from the quarterDeck? Clearly we should arrive
somewhere on the main deck, but should it be on the port or the starboard side? It could be either but there seems no
clear reason why it should be on or the other. One way to handle this is for travel aft from the foreDeck or forward from
the quarterDeck to bring the PC to either location, chosen at random on each location (which will also give the player
something else to figure out!). The neatest way to implement that is by using a OneWayRoomConnector that
produces this result:

mainDeck : OneWayRoomConnector
destination = (rand(portDeck, starboardDeck))

The definition of the other two deck sections then becomes straightforward:

foreDeck : Deck 'Fore Deck' 'the fore deck'
"The foredeck is at the front of the ship, overlooking the bows. Most of the
ship is aft from here. "
aft = mainDeck

Page 37

TADS 3 Tour Guide

quarterDeck : Deck 'Quarterdeck' 'the quarterdeck'
"The quarterdeck is a raised portion of the deck near the stern of the ship, and separated
from the deck further foreward by a wooden rail on which is mounted a panel. A flight
of steps leads down below. "
fore = mainDeck
down deckSteps

’

+ deckSteps : StairwayDown 'flight steps' 'steps'
"The steps lead down into a cabin below. "
isPlural = true

’

That said, when the player goes fore from the quarterDeck, it will normally be with the intention of leaving the ship, via
the port deck. The random selection of destinations in this case will quickly become an annoyance, so it is probably
better to define:

quarterDeck : Deck 'Quarterdeck' 'the quarterdeck'
"The quarterdeck is a raised portion of the deck near the stern of the ship, and separated
from the deck further foreward by a wooden rail on which is mounted a panel. A flight
of steps leads down below. "
fore = portDeck
port = portDeck
starboard = starboardDeck
down = deckSteps

’

Note: Shipboard and ShipboardRoom: prior to TADS 3.0.8 the class now called Shipboard was called
ShipboardRoom. The name was changed because Shipboard is a mix-in class designed to be used with Rooms, but
not actually a type of Room, so it seemed illogical to include Room in its name.

TADS 3.0.8 still defines a ShipboardRoom class (for convenience), but it now means something slightly different,
being defined simply as a combination of Shipboard and Room:

class ShipboardRoom : Shipboard, Room

’

2.25. FloorlessRoom

A FloorlessRoom, as its name suggests, is a location that lacks a floor, such as the top of a vertical shaft, or a tree.
The top of a mast, which is the sort of thing one would expect to find aboard ship, is another good example. Apart
from lacking a floor (something we'll discuss in more detail when we come to talk about roomParts) a FloorlessRoom
has the property that something dropped there does not remain there but drops out of sight either into oblivion, or into
other specified location (such as the bottom of the vertical shaft, tree or mast).

Before we can define the top of the mast we need to define its bottom. We'll assume the mast is located in the centre
of main deck, i.e. between portDeck and starboardDeck. It thus exists in both locations, which makes it an ideal
example of a MultiLoc:

mast : Multiloc, StairwayUp 'tall thick wooden mast' 'tall mast'
"The thick wooden mast towers up at least a hundred feet. "
locationList = [portDeck, starboardDeck]

’

We also make the mast a StairwayUp, since although it does not look much like a flight of stairs, it is something we
can climb to reach another location, and so it behaves like a StairwayUp. Note that the MultiLoc mix-in class must be
specified before the Thing-derived class (in this case StairwayUp) in the list of superclasses, and that its locationList
property contains a list of locations where the mast can be found.

We can now define the top of the mast as our FloorlessRoom example. The one thing we need to consider is how we
want to specify its bottomRoom property (the place where objects dropped here will end up). One would expect
something dropped from the top of the mast to fall to the deck below, but should it land in portDeck or starboardDeck?
Likewise, where should the PC fetch up when he or she descends the mast? This is precisely the same dilemma we
had when deciding how to proceed aft from foreDeck, so we can use precisely the same solution:

Page 38

TADS 3 Tour Guide

topOfMast : FloorlessRoom 'Top of Mast' 'the top of the mast'

"From the top of the mast you can see miles out across the lake to starboard
and the shore over to port. The deck below looks a sickenly long way down. "
down = mainDeck
bottomRoom = (mainDeck.destination)

’

The result of this is that something dropped from the top of the mast has an equal chance of fetching up in portDeck or
starboardDeck (in a simpler situation we could simply have specified a single room as the value of the bottomRoom
property). In a moment or two you can test this out by picking up the boulder on the way to the ship and dropping it
from the top of the mast. But first we have one more task to complete, and that is to provide a mast object for the PC
to climb down from at the top of the mast. This should clearly by a StairwayDown, but the problem is that its
masterObject will be the MultiLoc mast object, so it won't be able to handle climbing down properly - indeed, unless
we do something about it we'll get a runtime error before we even try. The solution is to remap the StairwayDown's
TravelVia handling to the mainDeck connector:

+ StairwayDown ->mast 'mast' 'mast'
"Right now you're clinging to it for dear life. "
dobjFor (TravelVia) remapTo (TravelVia, mainDeck)

’

You should now be able to compile and run the game to test that everything is working correctly. When moving about
the deck you can abbreviate the PORT, STARBOARD, FORE and AFT commands to P, SB, F and A respectively.
Just don't try going down the steps from the quarterdeck yet.

2.26. Floorless

Floorless is a mix-in class which adds Floorless behaviour to any Room class; that is it takes away the floor from the
list of room parts, and provides the handling for a dropped object to end up in another location.

Since the top of the mast is not exactly an (indoor) Room, in the sense of having four walls and a ceiling, it would be
better defined using a mix of Floorless and a more appropriate class:

topOfMast : Floorless, Deck 'Top of Mast' 'the top of the mast'

"From the top of the mast you can see miles out across the lake to starboard
and the shore over to port. The deck below looks a sickenly long way down. "
down = mainDeck
bottomRoom = (mainDeck.destination)

’

Although the randomizing maindeck connector works fine, as you'll have seen if you've experiment with it, it is actually
not a very good idea in practice. Not only will the random connector be potentially confusing to players, when we
come to define an NPC who will follow the PC around, it can result in accidentally losing her (for example if the PC
goes south from the foredeck and the NPC tries to follow him, she may end up on the port deck and he on the
starboard, which is simply wrong if she's meant to be following him). Thus, once you've experimented with this random
connector (assuming you want to), | suggest you remove its random element and change it to:

mainDeck : OneWayRoomConnector
destination = portDeck

2.27. HiddenDoor

A HiddenDoor is a variation on SecretDoor, the difference being that while a SecretDoor is a visible object (like the
rock we used before) that is not apparently a door, a HiddenDoor isn't even visible until it's been opened. For our
example we'll create a section of the foreward bulkhead of the cabin that slides open at the press of a button. We'll go
about concealing the button in a later section.

First, however, we need to create the cabin:

Page 39

TADS 3 Tour Guide

class Cabin : ShipboardRoom, Room;

greatCabin : Cabin 'Great Cabin' 'the great cabin'

"The great cabin occupies the entire width of the ship at the stern. The stern
windows aft look out over the water, while there is a solid wooden bulkhead
foreward. The main piece of furniture is a sturdy wooden desk, while a flight of
steps leads up to the deck above. "
up = cabinSteps
fore = bulkheadDoor

’

+ cabinSteps : StairwayUp -> deckSteps 'flight steps' 'steps'
"The steps lead up to the deck above. "
isPlural = true

There is nothing new in this, apart from the creation of our custom Cabin class (which, along with the Deck class, we'll
shortly be customizing a little further). We can now define the HiddenDoor:

+ bulkheadDoor : HiddenDoor 'bulkhead door/doorway/opening' 'bulkhead door'
"The central section of the foreward bulkhead has slid open, revealing a
doorway through the bulkhead. "
destination = crewQuarters

We next need to provide a mechanism for opening it, which we'll make a button that, for now, is simply a Fixture in the
cabin:

+ Button, Fixture 'small brown button' 'small brown button'
"The small brown button is fixed to the underside of the desk. "
dobjFor (Push)
{

action()

{
"There's a sharp <i>click</i>, and a section of the foreward bulkhead slides
<<pbulkheadDoor.isOpen ? 'closed' : 'open'>>. ";
bulkheadDoor.makeOpen (!bulkheadDoor.isOpen) ;

}

The description of the button shows where we'll end up putting it, but that will come later. Finally, we need to define
another couple of rooms where we fetch up when we go through the HiddenDoor:

class DarkCabin : Cabin
brightness = 0

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a
ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin

’

+ holdLadderDown : StairwayDown 'ladder' 'ladder';

hold : DarkCabin 'Hold'
"The hold seems vast and cavernous, and is largely empty. A ladder leads
up through an open hatchway above. "
up = holdLadderUp

’

+ holdLadderUp : StairwayUp ->holdLadderDown 'ladder' 'ladder';

We could have defined DarkCabin as ShipboardRoom, DarkRoom; but by making it inherit from Cabin we ensure that
it inherits any further customizations we add to the Cabin class.

Page 40

TADS 3 Tour Guide

2.28. EntryPortal

An EntryPortal is just like an Enterable, except that you can go through it as well as enter it. It can be used, for
example, for an archway that is plainly the entrance to another destination:

mainCave: Room 'Large Cave'

"This is the main cave. A large rock rests against the north wall and
there is another cave to the south and an archway to the east,
<<boulder.moved ? 'and a passage
has been opened up to the west' : 'but the way west is blocked by
a huge boulder'>>. A blazing torch is fixed to the wall, next to a sturdy
steel ladder leading upwards. "

north = rock

south = anotherCave

west : OneWayRoomConnector

{
->roundCave
canTravelerPass (traveler) { return boulder.moved; }
explainTravelBarrier (traveler)
{ "The huge boulder is in the way. "; }

}
east = squareCave
up = upLadder

+ EntryPortal ->squareCave 'arch/archway' 'archway'
"It's a large archway, leading to another cave beyond.

The property pointed to by -> in the template is actually the connector traversed, not the destination reached, when
the EntryPortal is entered, although when, as here, the connector is a Room this has the same effect (see this
discussion of the distinction in connection with the Enterable class, from which EntryPortal inherits). Entry portal
inherits from Enterable and hence inherits the Enterable template.

2.29. ExitPortal

An ExitPortal is just like an Exitable, except that you can go through it as well as exit it. For example:

squareCave : DarkRoom 'Square Cave' 'the square cave'

"This capacious cave is unnaturally square, suggesting that it has been
artificially hewn out of the rock, an impression further enhanced by
the carefully-constructed ashlar archway to the west. "

west = mainCave

out asExit (west)

’

+ ExitPortal -> mainCave 'ashlar arch/archway' 'archway'
"The archway is beautifully constructed from dressed stones.

Note that ExitPortal is not a travel connector; -> mainCave makes mainCave its connector property, not its
masterObject property. For the distinction, see further on the Enterable class. The template used here is the Exitable

template.

Page 41

TADS 3 Tour Guide
2.30. TravelBarrier

In all the examples we have used so far, when we have wanted to prevent travel via a TravelConnector, we have
overridden its canTravelerPass method to determined whether travel is permitted, and its explainTravelBarrier method
to explain why travel is forbidden (if it is forbidden). Normally this is the simplest and most convenient way to do it - but
there is another way, and that is to use TravelBarrier object.

A TravelBarrier is simply an object that defines canTravelerPass and explainTravelBarrier methods. A single
TravelBarrier, or a list of TravelBarriers, can be attached to a TravelConnector via its travelBarrier property. This can
be useful in a number of cases.

The first case is when a specialized type of TravelBarrier, such as the PushTravelBarrier, is required.

The second case is where you want to enforce the same barrier conditions on a number of different TravelConnectors.
Rather that write the same canTravelerPass and explainTravelBarrier methods on two or more TravelConnectors, you
can define them once on a TravelBarrier object then attach the object to each of the TravelConnectors to which it
applies. For example, suppose you want to prevent the player traveling either north or east from a particular location
without the lamp, you could define:

lampBarrier : TravelBarrier
canTravelerPass (traveler) {return lamp.isIn(traveler); }
explainTravelBarrier (traveler} { "You forgot the lamp! "; }

’

Then, on the relevant location you could define:

north : OneWayRoomConnector { -> darkPassage travelBarrier = lampBarrier }
east : OneWayRoomConnector { -> darkCorridor travelBarrier = lampBarrier }
south = lampRoom

The third case is where you want to perform a number of separate checks, each of which would result in a different
failure message. Rather than write a long switch statement or series of if statements in the explainTravelBarrier
method of the TravelConnector, you could define a number of TravelBarrier objects that pair the condition with the
message. For example, supposing that at another point in your journey, you want not only to enforce the condition that
the player has the lamp, as above, but also that he's not wearing the stolen jacket. You might then define another
TravelBarrier object:

jacketBarrier : TravelBarrier
canTravelerPass (traveler) {return !jacket.isWornBy (traveler); }
explainTravelBarrier (traveler) { "You'll stand out a mile wearing Lord Ponsonby's jacket in
there! "; }

Then you can attach both TravelBarriers to the same connector:

in : OneWayRoomConnector { -> pompousClubLobby
travelBarrier = [lampBarrier, jacketBarrier]

}

What happens is that among the checks carried out in the checkDobjTravelVia method of a TravelConnector is a call
to checkTravelBarriers; this first checks the canTravelerPass method of the TravelConnector itself, then works through
the list of TravelBarriers (if any) in the travelBarrier property, calling each of their canTravelerPass methods in turn. If
any of these canTravelerPass methods returns nil, the travel is aborted and the corresponding explainTravelBarrier
method is called.

2.31. AskConnector

The normal IF convention assumes that there is only one exit in any given compass direction. But what happens if you
want to model a situation where there are two, or three, or half a dozen, such as a north wall in which there are
several doors? You could, of course, simply attach a FakeConnector to the north property of such a location and have
it display a message telling the player to select a door to go through instead, but a better solution would be to use an
AskConnector. This is an "ask which" travel connector. Rather than just traversing the connector, we ask for a direct

Page 42

TADS 3 Tour Guide
object for a specified travel verb; if the player supplies the missing indirect object (or if the parser can automatically
choose a default), we'll perform the travel verb using that direct object.

AskConnector defines the following properties:

» promptMessage - An extra prompt message to show before the normal parser prompt for a missing or ambiguous
object. We'll show this just before the normal parser message, if it's specified. If you want to customize the
messages more completely, you can override askDisambig() or askMissingObject(). The parser will invoke these to
generate the prompt, so you can customize the entire messages by overriding these.

« travelAction - The specific travel action to attempt. This must be a TAction - an action that takes a direct object
(and only a direct object). The default is TravelVia, but this should usually be customized in each instance to the
type of travel appropriate for the possible connectors.

 travelObjs - The list of possible direct objects for the travel action. If this is nil, we'll simply treat the direct object of
the travelAction as completely missing, forcing the parser to either find a default or ask the player for the missing
object. If the travel is limited to a specific set of objects (for example, if there are two doors leading north, and we
want to ask which one to use), this should be set to the list of possible objects; the parser will then use the
ambiguous noun phrase rules instead of the missing noun phrase rules to ask the player for more information.

» travelObjsPhrase - The phrase to use in the disambiguation question to ask which of the travelObjs entries is to be
used. The language-specific module provides a suitable default, but this should usually be overridden if travelObjs is
overridden.

Here's an example of an AskConnector when there are two doors in the south wall.

stonelanding : Room 'Landing' 'the landing'
"A pair of doors lead south from this narrow landing, from which
a narrow flight of stone steps lead down to the north. "
down = slStairsDown
north asExit (down)
south : AskConnector
{
promptMessage = "There are two doors you could go through to the south . "
travelAction = GoThroughAction
travelObijs = [leftDoor, rightDoor]
travelObjsPhrase = 'of them'
}

’

+ leftDoor : Door 'left hand door*doors' 'left hand door'

’

+ rightDoor : Door 'right hand door*doors' 'right hand door'

’

Now, if you arrive at this destination and type the command SOUTH the parser will respond with "There are two doors
you could go through to the south. Which of them do you mean, the right hand door, or the left hand door?" Of course,
right now there's no way of reaching this location; we'll eventually provide it when we come to look at Consultable.

2.32. TravelConnector

TravelConnector is the base class from which all the connectors we have been looking at ultimately derive. You will
probably not define any objects of the TravelConnector class (as opposed to one of its subclasses) in your games,
since a raw TravelConnector doesn't actually lead anywhere. It's possible that you might define your own subclass of
TravelConnector for some particular purpose, or you could use a TravelConnector object in your game and override,
say, its actionDobjTravelVia method or its getDestinationMethod to produce the result you want (though in most cases
you'll probably want to use one of its subclasses rather than reinventing a wheel that's already in the library).

The main importance of TravelConnector, however, is that it defines a large number of the properties and methods

used on all its subclasses. These are listed below for the sake of reference, using descriptions taken from the
comments in the library code:

Page 43

TADS 3 Tour Guide

Properties:

connectorStagingLocation: The "staging location" for travel through this connector. By default, if we have a
location, that's our staging location; if we don't have a location (in which case we probably an outermost room), we
don't have a staging location.

isCircularPassage: Is this a "circular" passage? A circular passage is one that explicitly connects back to its origin,
so that traveling through the connector leaves us where we started. When a passage is marked as circular, we'll
describe travel through the passage exactly as though we had actually gone somewhere. By default, if traveling
through a passage leaves us where we started, we assume that nothing happened, so we don't describe any travel.
Circular passages don't often occur in ordinary settings; these are mostly useful in disorienting environments, such as
twisty cave networks, where a passage between locations can change direction and even loop back on itself.

isConnectorListed: Is this connector listed? This indicates whether or not the exit is allowed to be displayed in lists
of exits, such as in the status line or in "you can't go that way" messages. By default, all exits are allowed to appear in
listings.

Note that this indicates if listing is ALLOWED - it doesn't guarantee that listing actually occurs. A connector can be
listed only if this is true, AND the point-of-view actor for the listing can perceive the exit (which means that
isConnectorApparent must return true, and there must be sufficient light to see the exit).

travelBarrier: Barrier or barriers to travel. This property can be set to a single TravelBarrier object or to a list of
TravelBarrier objects. checkTravelBarriers() checks each barrier specified here.

travelMemory: Our "travel memory" table. If this contains a non-nil lookup table object, we'll store a record of each
successful traversal of a travel connector here - we'll record the destination keyed by the combination of actor, origin,
and connector, so that we can later check to see if the actor has any memory of where a given connector goes from a
given origin. * We keep this information by default, which is why we statically create the table here. Keeping this
information does involve some overhead, so some authors might want to get rid of this table (by setting the property to
nil) if the game doesn't make any use of the information. Note that this table is stored just once, in the
TravelConnector class itself - there's not a separate table per connector.

Methods:

actorTravelPreCond (actor): Get the travel preconditions that this connector requires for travel by the given actor. In
most cases, this won't depend on the actor, but it's provided as a parameter anyway; in most cases, this will just apply
the conditions that are relevant to actors as travelers.

By default, we require actors to be "travel ready" before traversing a connector. The exact meaning of "travel ready" is
provided by the actor's immediate location, but it usually simply means that the actor is standing. This ensures that the
actor isn't sitting in a chair or lying down or something like that. Some connectors might not require this, so this routine
can be overridden per connector.

Note that this will only be called when an actor is the traveler. When a vehicle or other kind of traveler is doing the
travel, this will not be invoked.

canTravelerPass (traveler): Check to see if the Traveler object is allowed to travel through this connector. Returns
true if travel is allowed, nil if not.

This is called from checkTravelBarriers() to check any conditions coded directly into the TravelConnector. By default,
we simply return true; subclasses can override this to apply special conditions.

If an override wants to disallow travel, it should return nil here, and then provide an override for explainTravelBarrier()
to provide a descriptive message explaining why the travel isn't allowed.

Conditions here serve essentially the same purpose as barrier conditions. The purpose of providing this additional
place for the same type of conditions is simply to improve the convenience of defining travel conditions for cases
where barriers are unnecessary. The main benefit of using a barrier is that the same barrier object can be re-used with
multiple connectors, so if the same set of travel conditions apply to several different connectors, barriers allow the
logic to be defined once in a single barrier object and then re-used easily in each place it's needed. However, when a
particular condition is needed in only one place, creating a barrier to represent the condition is a bit verbose; in such
cases, the condition can be placed in this method more conveniently.

checkTravelBarriers (dest): Check barriers. The TravelVia check() routine must call this to enforce barriers.

connectorBack (traveler, dest): Find a connector in the destination location that connects back as the source of
travel from the given connector when traversed from the source location. Returns nil if there is no such connector.
This must be called while the traveler is still in the source location; we'll attempt to find the connector back to the
traveler's current location.
The purpose of this routine is to identify the connector by which the traveler arrives in the new location. This can be
used, for example, to generate a connector-specific message describing the traveler's emergence from the connector
(so we can say one thing if the traveler arrives via a door, and another if the traveler arrives by climing up a ladder).
Page 44

TADS 3 Tour Guide

By default, we'll try to find a travel link in the destination that links us back to this same connector, in which case we'll
return 'self' as the connector from which the traveler emerges in the new location. Failing that, we'll look for a travel
link whose apparent source is the origin location. This should be overridden for any connector with an explicit
complementary connector. For example, it is common to implement a door using a pair of objects, one representing
each side of the door; in such cases, each door object would simply return its twin here. Note that a complementary
connector doesn't actually have to go anywhere, since it's still useful to have a connector back simply for describing
travelers arriving on the connector.

This must be overridden when the destination location doesn't have a simple connector whose apparent source is this
connector, because in such cases we won't be able to find the reverse connector with our direction search.

connectorGetConnectorTo (origin, traveler, dest): Get the travel connector leading to the given destination from
the given origin and for the given travel. Return nil if we don't know a connector leading there.

By default, we simply return 'self' if our destination is the given destination, or nil if not.

Some subclasses might encapsulate one or more "secondary" connectors - that is, the main connector might choose
among multiple other connectors. In these cases, the secondary connectors typically won't be linked to directions on
their own, so the room can't see them directly - it can only find them through us, since we're effectively a wrapper for
the secondary connectors. In these cases, we won't have any single destination ourself, so getDestination() will have
to return nil. But we can work backwards: given a destination, we can find the secondary connector that points to that
destination. That's what this routine is for.

connectorTravelPreCond (): Get any connector-specific pre-conditions for travel via this connector.

createUnlistedProxy () : Get an unlisted proxy for this connector. This is normally called from the asExit () macro
to set up one room exit direction as an unlisted synonym for another.

darkTravel (actor, dest): Handle travel in the dark. Specifically, this is called when an actor attempts travel from one
dark location to another dark location. (We don't invoke this in any other case: light-to-light, light-to-dark, and dark-to-
light travel are all allowed without any special checks.)

By default, we will prohibit dark-to-dark travel by calling the location's darkTravel handler. Individual connectors can
override this to allow such travel or apply different handling.

describeArrival (traveler, origin, dest): Describe an actor's arrival through the connector from the given origin into
the given destination. This description is from the point of view of another actor in the destination.

Note that this is called on the connector that reverses the travel, NOT on the connector the actor is actually traversing
- that is, 'self' is the backwards connector, leading from the destination back to the origin location. So, if we have two
sides to a door, and the actor traverses the first side, this will be called on the second side - the one that links the
destination back to the origin.

describeDeparture (traveler, origin, dest): Describe an actor's departure through the connector from the given
origin to the given destination. This description is from the point of view of another actor in the origin location.

describeLocalArrival (traveler, origin, dest): Describe a "local arrival" via this connector. This is called when the
traveler moves around entirely within the field of view of the player character - that is, the traveler's origin is visible to
the player character when we arrive in our destination. We'll describe the travel not in terms of arriving, since the
traveler was already here to start with, but rather as entering the destination.

dobjFor (TravelVia): Action handler for the internal "TravelVia" action. This is not a real action, but is instead a
pseudo-action that we implement generically for travel via the connector. Subclasses that want to handle real actions
by traveling via the connector can use remapTo(TravelVia) to implement the real action handlers. Note that remapTo
should be used (rather than, say, asDobjFor), since this will ensure that every type of travel through the connector
actually looks like a TravelVia action, which is useful for intercepting travel actions generically in other code.

explainTravelBarrier (traveler): Explain why canTravelerPass() returned nil. This is called to display an explanation
of why travel is not allowed by self.canTravelerPass().

Since the default canTravelerPass() always allows travel, the default implementation of this method does nothing.
Whenever canTravelerPass() is overridden to return nil, this should also be overridden to provide an appropriate
explanation.

fixedSource (dest, traveler) Get the "fixed" source for travelers emerging from this connector, if possible. This can
return nil if the connector does not have a fixed relationship with another connector.

The purpose of this routine is to find complementary connectors for simple static map connections. This is especially
useful for direct room-to-room connections.

When a connector relationship other than a simple static mapping exists, the connectors must generally override
connectorBack(), in which case this routine will not be needed (at least, this routine won't be needed as long as the

Page 45

TADS 3 Tour Guide
overridden connectorBack() doesn't call it). Whenever it is not clear how to implement this routine, don't - implement
connectorBack() instead.

getApparentDestination (origin, actor): Get the apparent destination of travel by the actor to the given origin. This
returns the location to which the connector travels, AS FAR AS THE ACTOR KNOWS. If the actor does not know and
cannot tell where the connector leads, this should return nil.

Note that this method does NOT necessarily return the actual destination, because we obviously can't know the
destination for certain until we traverse the connection. Rather, the point of this routine is to return as much
information as the actor is supposed to have. This can be used for purposes like auto-mapping, where we'd want to
show what the player character knows of the map, and NPC goal-seeking, where an NPC tries to figure out how to get
from one point to another based on the NPC's knowledge of the map. In these sorts of applications, it's important to
use only knowledge that the actor is supposed to have within the parameters of the simulation.

Callers should always test isConnectorApparent() before calling this routine. This routine does not check to ensure
that the connector is apparent, so it could return misleading information if used independently of
isConnectorApparent(); for example, if the connector formerly worked but has now disappeared, and the actor has a
memory of the former destination, we'll return the remembered destination.

The actor can know the destination by a number of means:

1. The location is familiar to the character. For example, if the setting is the character's own house, the character
would obviously know the house well, so would know where you'd end up going east from the living room or south
from the kitchen. We use the origin method actorKnowsDestination() to determine this.

2. The destination is readily visible from the origin location, or is clearly marked. For example, in an outdoor setting, it
might be clear that going east from the field takes you to the hilltop. In an indoor setting, an open passage might make
it clear that going east from the living room takes you to the dining room. We use the origin method
actorKnowsDestination() to determine this.

3. The actor has been through the connector already in the course of the game, and so remembers the connection by
virtue of recent experience. If our travelMemory class property is set to a non-nil lookup table object, then we'll
automatically use the lookup table to remember the destination each time an actor travels via a connector, and use
this information by default to provide apparent destination information.

getDestination (origin, traveler): Get our destination, given the traveler and the origin location.

This method is required to return the current destination for the travel. If the connector doesn't go anywhere, this
should return nil. The results of this method must be stable for the extent of a turn, up until the time travel actually
occurs; in other words, it must be possible to call this routine simply for information purposes, to determine where the
travel will end up.

This method should not trigger any side effects, since it's necessary to be able to call this method more than once in
the course of a given travel command. If it's necessary to trigger side effects when the connector is actually traversed,
apply the side effects in noteTraversal().

For auto-mapping and the like, note that getApparentDestination() is a better choice, since this method has internal
information that might not be apparent to the characters in the game and thus shouldn't be revealed through
something like an auto-map. This method is intended for internal use in the course of processing a travel action, since
it knows the true destination of the travel.

Note that on the TravelConnector class this method simply returns nil, which is why a raw TravelConnector won't get
you anywhere. This methiod is overridden on subclasses to do something more useful.

isConnectorApparent (origin, actor): Determine if the travel connection is apparent - as a travel connector - to the
actor in the given origin location. This doesn't indicate whether or not travel is possible, or where travel goes, or that
the actor can tell where the passage goes; this merely indicates whether or not the actor should realize that the
passage exists at all.

A closed door, for example, would return true, because even a closed door makes it clear that travel is possible in the
direction, even if it's not possible currently. A secret door, on the other hand, would return nil while closed, because it
would not be apparent to the actor that the object is a door at all.

isConnectorPassable (origin, traveler): Determine if the travel connection is passable by the given traveler in the
current state. For example, a door would return true when open, nil when closed.

This information is intended to help game code probing the structure of the map. This information is NOT used in actor
travel; for actor travel, we rely on custom checks in the connector's TravelVia handler to enforce the conditions of
travel. Actor travel uses TravelVia customizations rather than this method because that allows better specificity in
reporting failures. This method lets game code get at the same information, but in a more coarse-grained fashion.

isConnectorVisibleInDark (origin, actor): Can the given actor see this connector in the dark, looking from the given
origin? Returns true if so, nil if not.
This is used to determine if the actor can travel from the given origin via this connector when the actor (in the origin
location) is in darkness.
By default, we implement the usual convention, which is that travel from a dark room is possible only when the
destination is lit. If we can't determine our destination, we will assume that the connector is not visible.

Page 46

TADS 3 Tour Guide

noteTraversal (traveler): Note that the connector is being traversed. This is invoked just before the traveler is
moved; this notification is fired after the other travel-related notifications (beforeTravel, actorTravel, travelerLeaving).
This is a good place to display any special messages describing what happens during the travel, because any
messages displayed here will come after any messages related to reactions from other objects. (By default this
method does nothing, and can be freely overridden with your own code; note, however, that it is overridden ny the
library in TravelWithMessage, and hence in the subclasses of TravelWithMessage, such as TravelMessage,
NoTravelMessage, and FakeConnector, as well).

rememberTravel (origin, actor, dest): Service routine: add a memory of a successful traversal of a travel connector.
If we have a travel memory table, we'll add the traversal to the table, so that we can find it later.

This is called from Traveler.travelerTravelTo() on successful travel. We're called for each actor participating in the
travel.

2.33. Room Methods and Properties

2.33.1. roomXxxxAction

We have now explored all the main types of Room and TravelConnector in the standard library that an author is likely
to use (we have not included classes such as BasicLocation, Passage and Stairway that are unlikely to be used
directly, since one would normally use one of their subclasses). But before leaving the topic of rooms it may be worth
looking at one or two of the methods and properties that can be overridden on them to customise their behaviour.

We have already seen how to customise the atmosphereList and brightness properties, so we shall start with the
roomAfterAction and roomBeforeAction methods. These are called on the room object whenever an action is
performed within that room, either after or before the action. In addition, the roomBeforeAction can abort an action by
calling the exit macro. As ever, this is probably best illustrated by means of an example, which we'll provide by adding
roomBeforeAction and roomAfterAction methods to the Cabin class:

class Cabin : ShipboardRoom, Room

roomBeforeAction ()
{

if (gActionIs (Jump))

{

"{You/he} had better not try jumping here, {you/he} might hit
{your} head on the deck beams. ";
exit;

}

}

roomAfterAction

{

if (gActionIn (Look, Examine))

{

"\nThe ship creaks ominously.\n";
}
}

’

The gActionls macro tests for the action that is either about to be performed in the room. If the Player Character
attempts to jump in the cabin he or she is warned that doing so might result in a collision of head and deck beams and
the action is aborted. We use the parameter substitution syntax ({You/he} etc.) to deal with the possibility that an
NPC is made to jump in the cabin. The gActionln macro tests for an action matching any of the actions in a list; we
use it in roomAfterAction, which tests for either a LOOK or an EXAMINE command being performed, and then
displays a message about the ship creaking after the results of the LOOK or EXAMINE. This example is somewhat
contrived, and one would probably use some other method to describe the creaking of the ship (although this one may
well do well enough) or else have roomAfterAction call the doScript method of an EventList object to vary the
message displayed, but the example will suffice to give the general idea. If you like, you can compile and run the
game to see what happens in a cabin when you try to JUMP, LOOK or EXAMINE there.

Perhaps the most important point to remember here is to use the roomAfterAction and roomBeforeAction methods for
this type of effect; using afterAction or beforeAction on a Room doesn't work.

Note also that in the above code snippet I've put brackets after roomBeforeaAction () but not after roomafteraction.
Where a method takes no parameters either is correct (brackets or no brackets) and it makes no difference which you
use.

Page 47

TADS 3 Tour Guide

2.33.2. roomParts

For a normal Room the library supplies a defaultFloor, defaultCeiling and four defaultWalls which provide a default
"You see nothing special about the floor/ceiling/wall" message if examined. An OutdoorRoom simply has a
defaultGround and defaultSky which perform the same function. These objects are listed in the roomParts property of
the respective classes, so that they are always available to be examined in any Room or OutdoorRoom. This property
can always be overridden, however, if you want more specific or appropriate roomParts for individual Rooms or
classes of Room. For example, we may define some roomParts more appropriate to the Deck of our ship on its
subterranean lake:

defaultDeck : Floor 'deck/ground/floor' 'deck'
"The deck is made of close-fitting wooden planks. "
putDestMessage = &putDestFloor

’

caveSky : RoomPart 'roof/ceiling' 'ceiling'
"The dark roof of the cave, a long way up, dimly reflects the
rippling green light from the lake. "

’

class Deck : ShipboardRoom, OutdoorRoom
roomParts = [defaultDeck, caveSky]

Note that rooms should generally have one and only one roomPart that represents the floor of the room, which must
be of class Floor; the main exception here is any room that is meant to be floorless, such as a FloorlessRoom or a
room defined with the Floorless mix-in class. Since we have made the top of the mast a Floorless, Deck, changing the
room parts of Deck leaves the top of the mast with caveSky as its only roomPart, which is, in fact, just what we want.
We could have achieved precisely the same result by defining:

topOfMast : FloorlessRoom 'Top of Mast' 'the top of the mast'
"From the top of the mast you can see miles out across the lake to starboard
and the shore over to port. The deck below looks a sickenly long way down. "

down = mainDeck
bottomRoom = (mainDeck.destination)
roomParts = [caveSky]

The defaultDeck and defaultCeiling will serve well enough for a Cabin, but it is hardly appropriate for a Cabin to have
the north, south, east and west walls found by default in a Room, so we need to provide a new set of roomParts:

defaultForeBulkhead : RoomPart 'f fore foreward bulkhead/wall*walls' 'foreward bulkhead';
defaultAftBulkhead : RoomPart 'a aft bulkhead/wall*walls' 'aft bulkhead';
defaultPortWall : RoomPart 'p port wall*walls' 'port wall';

defaultStarboardWall : RoomPart 'sb starboard wall*walls' 'starboard wall';

class Cabin : ShipboardRoom, Room
roomBeforeAction ()
{
if (gActionIs (Jump))
{

"{You/he} had better not try jumping here, {you/he} might hit
{your} head on the deck beams. ";
exit;

}
}
roomAfterAction
{
if (gActionIs (Look))
{
"\nThe ship creaks ominously.\n";
}

}
roomParts = [defaultDeck, defaultCeiling, defaultForeBulkhead, defaultAftBulkhead,

Page 48

TADS 3 Tour Guide
defaultPortWall, defaultStarboardWall]

’

The other change made here is to remove the gActionls(Examine) from the roomAfterAction, since otherwise the
creaking message will mask the default "You see nothing special about it" response to an attempt to examine these
default cabin parts.

In the greatCabin, however, even some of these specialised roomParts may not be entirely appropriate, since the aft
bulkhead is taken up with a window and the foreward one may have a special opening revealed by the press of a
button. We can thus further customise the roomParts for this particular room:

greatCabinForeBulkhead : defaultForeBulkhead
desc = "The foreward bulkhead is made of polished oak planks.
<<pbulkheadDoor.isOpen ? bulkheadDoor.desc : nil>> "

’

greatCabinAftBulkhead : defaultAftBulkhead
desc = "The aft wall of the cabin is pierced by a series of windows across
most of its width. "

’

greatCabin : Cabin 'Great Cabin' 'the great cabin'

"The great cabin occupies the entire width of the ship at the stern. The stern
windows aft look out over the water, while there is a solid wooden bulkhead
foreward. The main piece of furniture is a sturdy wooden desk, while a flight of
steps leads up to the deck above. "
up = cabinSteps
fore = bulkheadDoor
roomParts = static inherited - defaultAftBulkhead - defaultForeBulkhead

+ greatCabinAftBulkhead + greatCabinForeBulkhead

There's a couple of points to note here: the first is that we can make our specialised room parts inherit from their
corresponding default objects; this avoids the need to specify the vocabulary and name properties all over again. The
second is the use of the static and inherited keywords to adjust the list of roomParts from that specified in the Cabin
class (rather than having to list the whole lot again). We use static since the list of roomParts will never be changed
during the game, so the expression that follows the static keyword can be resolved at compile time rather than being
evaluated when the game is run.

There's also a couple of points to note about roomParts in general. The main one is that the library apparently expects
them to remain fixed throughout the duration of the game, which will normally be the case (most rooms with four walls,
a floor and a ceiling tend to keep them). There may, however, be odd occasions when you want to change the list of
room parts in a particular location during the course of a game: perhaps you blow a hole in one of the walls, or the
ceiling collapses, or the floor gives way. The thing to note there is that if you want to remove a room part from a room
during the course of the game you need to remove it both from the locations roomParts list and its contents list. For
example, if the main bathroom's ceiling is blown away in a hurricane, you'd need to write something like:

mainBathroom.roomParts -= defaultCeiling;
mainBathroom.contents -= defaultCeiling;

Similarly, if you want to add a room part to a location dynamically during the course of a game you'll need to add it
both to the location's roomParts list and to its contents list. The reason for this that Room's initializeThing method
appends the location's roomParts list to its contents list, but the library provides no automatic means of maintaining
this link thereafter.

Where a room has custom room part that you want to add or remove dynamically, prior to TADS 3.0.9 it might be
simpler not to include it in the roomParts list at all. The alternative would be simply to place it in its room using the
location property in the normal way, for example:

bathroomCeiling: RoomPart 'ceiling' 'ceiling' @mainBathroom
"It's full of cracks and looks like it wouldn't take much to make it collapse altogether.

Then, when the bathroom ceiling finally does collapse, all you need to write is:

bathroomCeiling.moveInto (nil) ;

Page 49

TADS 3 Tour Guide

Of course, if you do this, you need to remember to exclude defaultCeiling from the list of roomParts when you define
mainBathroom. A further consideration is that although it's reasonably easy to cope with custom walls and ceilings this
way, custom floors are a different matter: the library expects the floor (or ground) of a room to be among its
roomParts, and although this behaviour can be overridden on a given room (e.g. by overriding its roomFloor property),
it's probably simplest to stick to this rule.

TADS 3.0.9 added two new RoomPart methods, movelntoAdd(room) and moveOutOf(room), which provide a possibly
neater alternative. You can now include bathroomCeiling in the bathroom's roomParts property in the normal way, and
when the ceiling collapses simply call:

bathroomCeiling.moveOutOf (bathroom) ;

If the ceiling were subsequently repaired you could reverse this by calling:

bathroomCeiling.moveIntoAdd (bathroom) ;

This leads on to a more general point: where you want to use customised walls and ceilings (and possibly even floors)
in a given location, it's always possible to by-pass the roomParts mechanism altogether and simply make your
customised room parts ordinary Fixtures located in the room. If you do this, it's probably better to use the RoomPart
class for them than the Fixture class (since the RoomPart class contains some specializations that make better sense
for things like walls and ceilings), and you still have to remember to remove the default room part equivalents from the
location's roomParts list when you define the room, or you could end up with, say, two west walls, the default one and
your custom one.

For this reason, it's probably easier to get into the habit of always putting room parts - even custom ones - into their
location's roomParts list. This way you're much more likely to remember to remove the corresponding default room
part, and you also make sure you take advantage of the library's specialized handling of room parts. For example, if
you define a custom ceiling for one location, and then find it would suit another just as well, it's probably easier to add
it to the roomParts list of both locations than to make into a Multilnstance object.

2.33.3. cannotGoThatWay

BasicLocation.cannotGoThatWay is called whenever an actor (usually the PC) attempts travel in a direction that is not
currently available (except in the dark, when cannotGoThatWaylnDark is used instead). By default this simply displays
a message saying you can't go that way, and listing the exits that are available from the current location. There may
be occasions, however, when you'd like a different message displayed.

Consider our shipboard locations, the Decks and Cabins. Just as a shipboard direction such as PORT or AFT is that
meaningful on dry land, we may feel that compass directions such as NORTH or SW are not that relevant to moving
around a ship. We could therefore override the cannotGoThatWay method of Deck to display a more appropriate
message when travel in a compass direction is attempted:

class Deck : ShipboardRoom, OutdoorRoom
roomParts = [defaultDeck, caveSky]
cannotGoThatWay ()
{

if (gAction.parentAction.dirMatch.dir.ofKind (CompassDirection))
"Compass directions aren't that useful for getting about ship;
try fore, aft, port and starboard instead. ";
else
inherited;

’

The complicated part here is getting at what kind of direction the player typed, but the above seems to work. The easy
part is extending this behaviour to the Cabin class; simply make Cabin inherit from Deck instead of from
ShipboardRoom and Room. Since Deck inherits from ShipboardRoom and OutdoorRoom, the only difference between
Room and OutdoorRoom is the list of roomParts, and Cabin overwrites roomParts anyway, this change is perfectly
safe.

More generally, if you want to provide custom "Can't go that way" in a number of different locations, you may just need
to provide a cannotGoThatWayMsg:

Page 50

TADS 3 Tour Guide

squareCave : DarkRoom 'Square Cave' 'the square cave'

"This capacious cave is unnaturally square, suggesting that it has been
artificially hewn out of the rock, an impression further enhanced by
the carefully-constructed ashlar archway to the west. "

west = mainCave

out asExit (west)

cannotGoThatWayMsg = 'You can\'t go through solid rock! '

’

Where the property is not overridden, however, the default "You can't go that way" message will be displayed as
before.

2.33.4. cannotGoThatWaylnDark

By default, the cannotGoThatWaylnDark method of a Room (or BasicLocation) displays a message to the effect that
you can't see where you're going in the dark. We might want to change that in particular cases. For example, the
description of the crewQuarters suggests that there's a ladder leading down into the hold. If the player character goes
blundering about the crewQuarters in the dark there's always the danger that he or she will end up falling down the
ladder and kill themselves. To be fair, though, we may first want to warn the player character that wandering around in
the dark could prove dangerous, so we might do it this way:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a
ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin
cannotGoThatWayInDark ()
{
darkEvents.doScript() ;
}
darkEvents : StopEventList
{
[
'Blundering about a ship in the dark could prove dangerous. ',
new function

{
"Blundering around in the dark you fall down a ladder into the hold
and break your neck. ";
endGame (ftDeath) ;
}
1

}

’

Note that the endGame function isn't part of the standard library; it's used here as a convenient wrapper for the
finishGameMsg function., so the next job is to define this function:

function endGame (msg)

{
finishGameMsg (msg, [finishOptionUndo, finishOptionFullScore]);

}

The purpose is to avoid having to specify the same options (finishOptionUndo, finishOptionFullScore) each time we
want to end the game. The call to endGame(ftDeath) prints a "YOU HAVE DIED" message and ends the game with a
set of options such as UNDO, RESTART, FULL SCORE or QUIT; endGame(ftVictory) would do the same but with the
message "YOU HAVE WON". You can also supply your own message by supplying a single-quoted string as the msg
argument, e.g. endGame('YOU HAVE FAILED DISMALLY").

Note also that there is one situation that the code above does not handle, namely if the player tries to go DOWN from
the crewQuarters. We'll fix that next by overriding roomDarkTravel.

Page 51

TADS 3 Tour Guide

2.33.5. roomDarkTravel

BasicLocation.roomDarkTravel() defines what happens if we try to move from the current location when it's dark to
another dark location. By default, it simply displays the same message as cannotGoThatWaylnDark and then uses
exit to cancel the movement action. In most cases you'll probably want to keep both methods appearing to do the
same thing (unless you want to allow travel from one dark location to another), so that the player is given no indication
in the dark whether a given direction is valid for travel or not. In this case we could simply override roomDarkTravel to
call cannotGoThatWaylnDark and then exit:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a
ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin
cannotGoThatWayInDark ()
{
darkEvents.doScript () ;
}
roomDarkTravel (actor)
{
cannotGoThatWayInDark;
exit;
}
darkEvents : StopEventList
{
[
'Blundering about a ship in the dark could prove dangerous. ',
new function
{
"Blundering around in the dark you fall down a ladder into the hold
and break your neck. ";
endGame (ftDeath) ;

’

In this case the player only gets one warning; if the PC leaves the crewQuarters aft to the greatCabin after making one
false step in the dark, the next false step in crewQuarters in the dark will kill the PC off. This may be what you want,
but we'll try changing it next using enteringRoom.

2.33.6. enteringRoom

It is sometimes useful to have something happen each time an actor arrives in a room. For example, we may want to
reset the state of the darkEvents StopEventList each time the player character enters the crewQuarters so that there
is always one warning about blundering about in the dark before the PC falls down the ladder and dies. This can be
achieved by overriding enteringRoom:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a
ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin
cannotGoThatWayInDark ()
{
darkEvents.doScript () ;
}
roomDarkTravel (actor)
{
cannotGoThatWayInDark;
exit;
}
darkEvents : StopEventList
{

Page 52

TADS 3 Tour Guide
[
'Blundering about a ship in the dark could prove dangerous. ',
new function

{
"Blundering around in the dark you fall down a ladder into the hold

and break your neck. ";
endGame (ftDeath) ;
}
]
}

enteringRoom (traveler)

{
darkEvents.curScriptState = 1;

}

The enteringRoom method is a convenience hook that is called from travelerArriving, which performs some significant
processing of its own and which uses a longer parameter list. By default, the library method enteringRoom does
nothing, so that we do not need to call inherited. Without the enteringRoom method we should instead have had to
write:

travelerArriving (traveler, origin, connector, backConnector)

{
darkEvents.curScriptState = 1;
inherited (traveler, origin, connector, backConnector);

}

There is also a corresponding leavingRoom(traveler) method that can be used to execute custom code when a
traveler is about to leave a room.

2.33.7. inRoomName

The inRoomName(pov) method is used to define how a room should be named when listing its contents from the point
of view of another location. The method should return a single-quoted string. For further explanation and an example,
see DistanceConnector.

Page 53

TADS 3 Tour Guide

3. NonPortables

3.1. NonPortable Introduction

Most of the items we have added to the game so far have been NonPortables - that is objects that cannot be picked
up and moved around - but that is because they have mainly been various types of room and passage. In this section
we shall take a look at the principal kinds of NonPortable object one might use as part of the contents of a Room,
giving a few examples to start furnishing the rooms we have created so far.

One common feature of NonPortable objects to be borne in mind is that, by default, they are not shown in listings of
the contents of rooms or other objects. This is because they are considered to be permanent features of their location,
and should therefore be mentioned in the description of their room or other container, or else given an initSpecialDesc
or specialDesc (which will be listed). This behaviour can be changed by overriding the isListed, isListedInContents,
and isListedInlnventory properties of a NonPortable object. Note that the fact that a NonPortable is not listed does not
of itself make it invisible: it can still be EXAMINEd and will respond to other commands directed towards it.

You are not likely to declare an object to be of class NonPortable in your game code, since NonPortable serves
principally as a common ancestor class to a number of different classes that are commonly used. A partial tree of
NonPortable classes, some of which we have already met, is as follows:

NonPortable
Fixture
Component
ComplexComponent
Decoration
Unthing
Distant
Enterable
EntryPortal
Exitable
ExitPortal
NominalPlatform
Passage
Room
RoomPart
SecretFixture
Immovable
Heavy
TravelPushable

A Note on Notation

In what follows we shall specify the room location of objects using the @notation of the Thing template, rather than the
+ notation, e.g. by writing

myThing : Thing 'my thing' 'thing' @outsideCave
"A poor thing, but mine own. "

Rather than

+ myThing : Thing 'my thing' 'thing'
"A poor thing, but mine own. "

Either method is possible in your own code; the reason for doing it this way here is to avoid the need for (and possible
confusion arising from) specifying where in existing code these new objects need to be placed. There is also
something to be said for specifying the objects in a different part of the code - even a different source file - from the
rooms and connectors, since this leaves the basic outline of the map clearer in the room code. The downside is that it
may be less immediately apparent how objects and rooms relate to each other.

Page 54

TADS 3 Tour Guide

3.2. Fixture

The Fixture class is for items that are quite evidently fixed in place within their locations. Unless a Fixture is given an

initSpecialDesc or specialDesc property, it is not normally listed as part of the contents of a room, since it is assumed
that some reference will have been made to it in the description of the room. Some such Fixtures have already been

implemented as Passage objects; now we'll add a few others.

For example, the description of mainCave refers to a torch fixed to the wall, so we might implement it as a Fixture
(although later we shall also need to make it a FireSource):

Fixture 'torch' 'torch' @mainCave
"The torch, which is fixed firmly to wall by a steel bracket, is blazing merrily,
its flames casting a bright but flickering light over the cave. "
cannotTakeMsg = 'It\'s fixed to the wall. '

’

Note that we have overriden cannotTakeMsg to give a slightly more meaningul response than the default when the
player attempts to take the torch. It would also be possible to override the cannotMoveMsg and cannotPutMsg in a
similar way. If any of these properties is overridden it should be with a single-quoted string (or a property pointer) and
never with a double-quoted string.

The description of the Quarterdeck likewise refers to a deck rail, which we can implement thus:

Fixture 'wooden (deck) rail' 'deck rail' QquarterDeck
"The wooden deck rail runs along the forward edge of the Quarterdeck,
separating it from the main deck, although it is possible to get round
the rail either to starboard or port to go foreward. A large wooden
panel is fixed to the centre of the rail. "

’

In neither case is it necessary to give names to these objects, since they will not be referred to elsewhere in code
(though this may not always be the case with Fixtures). Note the use of the 'weak tokens' syntax in the vocabulary for
the rail; this allows players to refer to it as a 'wooden deck rail' without its answering to 'deck’ alone.

3.3. CustomFixture

A CustomFixture is simply a fixture that uses the same custom message for taking, moving, and putting. In many
cases, it's useful to customize the message for a fixture, using the same custom message for all sorts of moving. Just
override cannotTakeMsg, and the other messages will copy it.

We haven't yet reached the point in our game where we need a CustomFixture, but we'll eventually use one to
represent the pillars in a temple.

See also the similar but subtly different Customimmovable.

3.4. Decoration

The normal purpose of a Decoration object is to provide a description of an object mentioned in a room description or
other object description, when the object is of no real importance to the game but ought to be implemented for the
sake of completeness. For example, consider the following transcript:

>LOOK
Entrance Cave
This large cave forms the main entrance to the whole underground complex.

Page 55

TADS 3 Tour Guide

A red sign on one wall points to the north; next to it is a blue sign.

A sturdy steel ladder leads down through a large round hole in the floor,
and a narrow ledge is carved into one wall.

>X RED SIGN
You see no red sign here.

Even if the red sign is of no importance to the game, this is frustrating to the player. A Decoration object gets round
this by providing something that produces a description in response to an EXAMINE command and a message like
'The red sign is not important.’ in response to any other action attempted upon it. We could thus implement the two
sighs mentioned in the entranceCave as follows:

Decoration 'red sign*signs' 'red sign' (@entranceCave
"\nWAY OUT ->\n"
dobjFor (Read) asDobjFor (Examine)

’

Decoration 'blue sign*signs' 'blue sign' @entranceCave
"\n
WELCOME TO  THE\NEERHTSDAT CAVES\n"
dobjFor (Read) asDobjFor (Examine)

’

Note that we have remapped READ to EXAMINE for these signs since a player might quite reasonably expect to be
able to read a sign as well as examine it. Note also the *signs syntax in the vocabulary of these objects. Any word
after an asterisk (*) in an object's vocabulary is considered a plural (or other collective noun) for that object. In this

instance this allows a player type X SIGNS or READ SIGNS and have both signs described by the same command.

According to the room description of mainCave, the torch is simply fixed to the wall. If the player examines the torch
however, he or she is told that the torch is fixed to the wall by means of a steel bracket. Players are not meant to
interact with the bracket in any other way, but since they may try to, it is a good candidate for a Decoration object.

Decoration 'steel bracket' 'steel bracket' @mainCave
"The steel bracket is fixed securely to the wall; there doesn't appear to be
any way it could be detached. "

’

Included in the description of longCave is the notice that "Some words have been crudely scratched on the south
wall." A Decoration object may well be just the thing to represent these words, but this requires a little more thought.
By default if we try to do anything to these words but EXAMINE them, the game will report "The words aren't
important." This may not be the message we want to convey here, since what the writing on the wall says may actually
have some significance. To deal with this need we need to override the Decoration's notimportantMsg property with
something more appropriate. Moreover, it would be reasonable for the player to attempt to READ the words as well as
EXAMINE them; as in the case of the two signs in the Entrance Cave, we want READ to be treated like EXAMINE
rather than displaying whatever we put into notimportantMsg, so once again we need dobjFor(Read)
asDobjFor(Examine). There is one further complication: the writing is described as being scratched on the south wall,
so it ought to be described if the player examines the south wall; to achieve this we need to associate the words with
the south wall of the cave:

longCaveWords : Decoration 'words/writing' 'words' @longCave
"The writing on the wall declares:\b
<g>One banana to rule them all\nAnd in the darkness bind them.</g>"
isPlural = true
notImportantMsg = 'That\'s not the sort of thing you can do to them.
dobjFor (Read) asDobjFor (Examine)
initNominalRoomPartLocation = defaultSouthWall

v

’

The last line of this definition (excluding the final semicolon) tells the system that the longCaveWords are nominally on
the south wall. This allows the player to EXAMINE WORDS ON SOUTH WALL as well as EXAMINE WORDS and
have the description displayed. It also causes the words to be mentioned when the player types EXAMINE SOUTH
WALL (note that prior to version 3.0.9 it would also have been necessary to override isListedInRoomPart to achieve
this effect, but this is no longer necessary in 3.0.9).

A further refinement offered in version 3.0.9 is the new mix-in class RoomPartltem. This allows us to set up an item
that displays its specialDesc (or initSpecialDesc) only when the room part to which its nominally attached is examined.
This is useful for objects such as doors and windows that might already be included in the general room description,

Page 56

TADS 3 Tour Guide

or for objects that are not worth listing in their own right but which are worth a mentioned when the room part to which
they are attached is examined. The advantage of using specialDesc (or initSpecialDesc) for this purpose is that we
can customise the way the fixture is described, instead of producing something a bit ungainly like, "On the north wall is
a red door. " As an example, we might further customise the bracket object so that when the north wall of the cave is
examined we see "A steel bracket containing a flaming torch is attached to the wall. ":

bracket : RoomPartItem, PermanentAttachment, Decoration 'steel bracket' 'steel bracket'
@mainCave
"The steel bracket is fixed securely to the wall; there doesn't appear to be
any way it could be detached. "
specialNominalRoomPartLocation = defaultNorthWall
specialDesc = "A steel bracket containing a flaming torch is fixed to the wall. "

’

Note that in this case, since the bracket will never move, it doesn't matter whether we use
specialNominalRoomPartLocation and specialDesc, or initNominalRoomPartLocation and initSpecialDesc, as long as
we use one pair or the other and don't try to mix them. If the bracket could be removed from the wall, we'd probably
want to use initNominalRoomPartLocation and initSpecialDesc.

Finally, a simple example of a Decoration would be the lake as seen from the shore. There seems little reason why
the lake should look any different from lakeRoom and pathEnd; rather than define the same decoration twice, we can
thus take a shortcut by making it a MultiLoc; strictly speaking, it should perhaps be a Multilnstance, but in this case no
harm will come of using MultiLoc and it's slightly simpler.

MultilLoc, Decoration 'great (giant) underground lake/water' 'lake'
"The lake, which stretches as far south as you can
see, looks almost as flat as a millpond, although the occasional
ripple runs across its surface. It is also strikingly
phosphorescent, casting an eerie green glow over the whole
vast cavern. "
locationList = [lakeRoom, pathEnd]

’

The point to bear in mind here is that a MultiLoc represents a single physical object present in more than one location,
and one that is sufficiently small that, for example, if it is lit in one location it is lit in all and if something is put in it in
one location it can be retrieved from it in another. The lake meets the first of these conditions, but not the second.
Because, howevever it's a Decoration, the only relevant consideration is lighting. If one part of the lake might be in
darkness while another was lit, it would inappropriate to use a MultiLoc to represent it (since what was meant to be the
dark part of the lake would appear as lit). In this game, however, all parts of the lake will be permanently lit, so it's safe
to make it a MultiLoc.

The general principle here is that it's safe to make a Decoration a MultiLoc if and only if the lighting conditions are
always the same in all the locations where the Decoration exists (it's fine if all the lighting conditions change
simultaneously, but they must always be the same in each location at any one time). If this condition is not met, use a
Multilnstance instead.

3.5. Distant

A Distant is a special type of Decoration that represents an object that's too far away to interact with, perhaps an
object that's in another location. The lake as seen from the top of the mast might come into this category:

Distant 'great underground lake' 'lake' Q@topOfMast
"The lake stretches out to starboard as far as the eye can see; it looks as
calm and flat as a millpond. "

’

The shore as seen from the same place might also come into this category. Since eventually the ship will move
around the desciption must either be studiously vague or else vary according to the location of the ship:

Distant 'shore' 'shore' @topOfMast
desc ()

{
Page 57

TADS 3 Tour Guide
switch (ship.location)
{
case lakeRoom:
"The shore to port is a narrow strip of land bounded by the wall of the
cave, through which a doorway leads to the north. ";
break;
default:
"The shore is directly on the port side of the ship. ";

Clearly, we should come back and expand the desc method once we've implemented more of the locations the ship
can go to. The points to note here are (1) that desc() can be a method (in which case we need to name it explicitly, not
via the template) and (2) to remember to use the break statement in each branch of the switch statement where we
don't want fall-through.

3.6. Unthing

An Unthing is a special kind of Decoration used to represent something that isn't present, but to which the player might
try to refer; it then displays its notHereMsg to explain why it isn't there. The most common use for an Unthing is to
represent the absence of something that has just disappeared. For example suppose we plant what appears to be
treasure in mainCave, but have it disappear when the player attempts to take it. We might then move an Unthing into
its place to describe its absence if the player continues to refer to it:

fakeTreasure : Thing 'huge great golden gold banana/treasure’
'golden banana' @mainCave
"It's a fantastic treasure, over two feet long, and by the look of it, solid
gold. It must be worth an absolute fortune!"
initSpecialDesc = "A huge treasure - a great golden banana - lies on the ground. "
dobjFor (Take)
{

action()

{
"All that glisters is not gold, and as you try to take the great golden
banana it crumbles into dust and vanishes away. ";
noTreasure.movelInto (location);
movelInto (nil);

}

}

getFacets () { return [noTreasure]; }

’

noTreasure : Unthing 'huge great golden gold treasure/banana/dust' 'golden banana'
'The illusory golden banana vanished into fine dust that is no
longer visible. '

Note the use of getFacets on fakeTreasure, so that if a player types TAKE BANANA followed by, say, X IT, the parser
will know that IT now refers to the noTreasure object that's just been substituted for the fakeTreasure. In this case
there's no need to add a getFacets method to noTreasure, since the fakeTreasure will never reappear to be referred
to as IT. Note also the range of vocabulary words we have given to both objects, and that we added' dust' to the list of
words by which the noTreasure object can be referred to.

Note that the third property we have defined on Unthing is single-quoted string, not a double-quoted string. This is
because there is a special Unthing template which puts the notHereMsg instead of desc in third place. We don't want
to define desc on an Unthing, because it's not generally useful, we just want to define the notHereMsg which will be
used for any command that tries to interract with the Unthing. The above definition of noTreasure is equivalent to:

noTreasure : Unthing 'huge great golden gold treasure/banana/dust' 'golden banana'
notHereMsg = 'The illusory golden banana vanished into fine dust that is no
longer visible. '

Page 58

TADS 3 Tour Guide
Or to:

noTreasure : Unthing
vocabWords = 'huge great golden gold treasure/banana/dust'
name = 'golden banana'
notHereMsg = 'The illusory golden banana vanished into fine dust that is no
longer visible. '

3.7. Immovable

An Immovable object is one that can't be moved but isn't obviously fixed in place. The practical difference between a
Fixture and an Immovable is that moving the former is forbidden in the verify method, while moving the latter is
disallowed in the action method.

The messages that are displayed when the player attempts to TAKE, PUT or otherwise MOVE (e.g. PUSH or PULL)
an Immovable can be changed by overriding cannotTakeMsg, cannotPutMsg and cannotMoveMsg respectively.

A simple Immovable would be something like a piece of furniture that the player's not allowed to take or move.
However, we'll make our example a bit more interesting than that: we'll put a rug in the roundCave that starts by
covering the hole in the floor. The player cannot take the rug but he or she can pull it (once only) to reveal the hole
beneath. Later we'll also hide a key under this rug:

rug : Immovable 'large rectangular chinese rug/pattern/leaves/dragons' 'Chinese rug'
@roundCave
"The rectangular rug is patterned in pastel colours, mainly turquoise round the
edge and principally golds and browns within. The patterns consists mainly
of leaves and dragons. "

initSpecialDesc = "A Chinese rug covers the centre of the floor. "
specialDesc = "The Chinese rug has been pulled over to one side of the cave. "
cannotTakeMsg = 'You probably could roll the carpet up and drag it around,

but you don\'t want to be encumbered with it. '
dobjFor (Pull)
{

action ()
{
if (moved)
"You can't pull the rug any further, it's already at the edge of the cave. ";
else
{
"Pulling the rug over to the edge of the cave reveals a square hole in the floor. ";
moved = true;

}

’

There a few things to note here. First, we have used the moved property of the rug to determine whether or not the
rug has been pulled to one side. This isn't its normal function, since normally moved is used to track whether an object
has moved into another location. However, it's convenient here, both because we don't need rug.moved for any other
purpose and also because setting moved = true when the rug has been pulled also means that thereafter the
specialDesc will be displayed in place of the initSpecialDesc, which happens to be just what we want (since it
describes the changed state of the carpet). We have overridden cannotTakeMsg to provide a custom response, and,
more importantly, we have overridden the dobjFor(Pull) handling to allow the rug to be pulled a single time to reveal
the hole.

This does, of course, require some change to the definition of the hole object so that it appears and can be traversed
only when the rug has been pulled aside. The easiest way to achieve this is to change it from a ThroughPassage to a
HiddenDoor and to set its isOpen property to rug.moved (since moving this rug effectively opens this previously
hidden passage). We also need to change the room description of roundCave so that the hole is mentioned only when
the rug has been pulled:

Page 59

TADS 3 Tour Guide

roundCave : DarkRoom 'Round Cave' 'the round cave'
"This round, rocky cave has a narrow exit to the east<<rug.moved ?
' and a strange square hole in the floor' : nil>> . "
east = mainCave
down = squareHole
+ squareHole : TravelWithMessage, HiddenDoor 'square hole/chute' 'square Hole'

"The hole is just about large enough for one person to fit through. A glint
of something metallic can be seen just through the hole. "

travelDesc = "You find yourself sliding down a long, slippery metal chute;
After a short ride you are ejected into another cave. "
isOpen = (rug.moved)

3.8. Customimmovable

A Customlimmovable is an Immovable that uses the same custom message for taking, moving, and putting. In many
cases, it's useful to customize the message for an immovable, using the same custom message for all sorts of
moving. Just override cannotTakeMsg, and the other messages will copy it.

At first sight this makes a Customlmmovable look identical in function to a CustomFixture; there is, however, a subtle
difference. This is, of course, the same as the difference between an Immovable and a Fixture, namely that while the
library regards an attempt to move, push or take a Fixture as illogical (i.e. ruled out in the verify method), it merely
disallows taking an Immovable (in the action method). The main practical effect of this is that a CustomFixture will not
be considered as a possible candidate for a move, take or push action in disambiguation, while a Customlmmovable
will. CustomFixture should therefore be used for things that obviously can't be moved around (like pillars in a temple),
while Customimmovable should be used for things that perhaps could be taken, but in fact cannot be (like the carpet
in the Immovable example, which could just as well have been a Customlmmovable). We'll give another example of a
CustomIimmovabile later.

3.9. Heavy

A Heavy object is one that is too heavy for the player character to lift or move, such a piece of heavy furniture:

cabinDesk : Heavy 'large solid oak desk' 'desk' (@greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "

’

We shall be doing more things with this desk in due course.

3.10. Component

As its name suggests, a Component is something that is part of something else. It need not be fixed within a particular
room location, since it could be part of a portable object, a button on a mobile device, for example, but it cannot be
detached from its immediate parent, and wherever its parent goes, it goes with it. A button on a stationery device
equally qualifies, however, so we can now move the button that was defined in greatCabin to a more appropriate
location (just after the desk defined above), and change it from a Fixture to a Component:

+ Button, Component 'small brown button' 'small brown button'
"The small brown button is fixed to the underside of the desk. "
dobjFor (Push)
{
action ()

{

"There's a sharp <i>click</i>, and a section of the foreward bulkhead slides

Page 60

TADS 3 Tour Guide
<<bulkheadDoor.isOpen ? 'closed' : 'open'>>. ";
bulkheadDoor.makeOpen (!bulkheadDoor.isOpen) ;

}

As yet we have not implemented any portable objects to which a component might be attached, but we have referred
to a panel mounted on the deck rail, so we can follow the definition of the deck rail object immediately with:

+ Component 'large wooden panel' 'panel'
"The panel seems to have something to do with sailing the ship. A wheel and a lever
are mounted on it, and between them is a hexagonal aperture. "

The panel refers to a wheel, a lever and a hexagonal aperture, all of which will be its components; but we are not in a
position to implement any of these just yet.

Page 61

TADS 3 Tour Guide

4. Things

4.1. Thing - Introduction

The Thing class is important in the TADS3 library for two reasons: (1) because it is the class used for all sorts of
portable objects the player may interact with and (2) because it is the ancestor class for anything that represents a
physical object in game (included those that are non-portable and some that are intangible). In the present chapter we
shall concentrate principally on the first use of Thing - as a class in its own right - but because so many classes inherit
(directly or indirectly) from Thing, much of what we say about the properties and methods of Thing will be equally
applicable to classes that inherit from Thing.

The properties and methods of Thing we shall be going on to discuss (or at least, exemplify) include:

brightness
bulk
canBeTouchedBy
desc

described
disambigName
distantInitSpecialDesc
feelDesc
globalParamName
initSpecialDesc
initDesc
isEquivalent
isHeldBy

isKnown

location
material

moved

name
remoteInitSpecialDesc
seen

sightSize
soundSize
smellDesc
specialDesc
tasteDesc
throwTargetCatch
useSpecialDesc
vocabWords
weight

In the present chapter we shall discuss only the simplest and most common of these, since some of the others will
only become relevant in the light of other classes and concepts we haven't covered yet.

There are also one or two sublasses of Thing that are both so straightforward and so miscellaneous they may as well
be dealt with in this chapter, namely:

Food
Readable
Wearable

4.2. Thing - The Basics

The basic properties that apply to almost all Thing objects (and objects using many of the classes inheriting from
Thing) are vocabWords, name, location, and desc. These are so common the standard Thing template allows them to
be defined without naming them, thus:

myObject : Thing 'vocabWords ' 'name' @location
"desc"

Page 62

TADS 3 Tour Guide

And for the most basic portable objects, this type of definition will often suffice without the need to define any other
properties or methods. For example, we shall leave a coin for the player to find in the longCave room (using the Thing

template):

brassCoin : Thing '(small) brass coin/groat*coins' 'small brass coin' Q@longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

By now, most of these properties should be familiar. The desc (description) property is what is displayed in response
to an EXAMINE command; the only real complication is that you may sometimes want to define desc as a method, in
which case it must be explicitly defined as a named method outside the template.

The name property is the what will normally appear when the object is listed in the contents of rooms, containers or
inventory, or when the parser needs to refer to the object (E.g. "Which coin do you mean, the brass coin or the gold
coin?").

For a Thing the location is normally the object's physical container, which may be a room, an actor (including the
Player Character) who is carrying or wearing the object, or some other form of physical container (such as a jar or the
top surface of a table). The location can also be specified by using the + notation; e.g. to put the coin in longCave we
could have written

longCave : DarkRoom 'Long Cave'

+ brassCoin : Thing '(small) brass coin/groat*coins' 'small brass coin'
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

’

Note that if both the + notation and the @location notation are used on the same object, the + notation takes
precedence. But if the + notation is used with an explicit setting of the location property, the explicitly named location
property takes precedence. For example, in the case of the brassCoin with the + notation, if | added @entrancecave
to the object definition after 'brass coin' the coin would remain in longCave, but if | added 1ocation=entranceCave
the brass coin would start life in the entranceCave, despite the + property. This can sometimes be useful if you have a
sequence of objects nested within one another using the + notation and you want to define an object that doesn't
belong in the containment hierarchy amongst those that do.

Note also that if location is an expression or method, it must be explicitly defined as a named property outside the
template, e.g. location = (ship.location)

The vocabWords property is perhaps the most complex of the four, so we shall discuss it in a separate section.

4.3. vocabWords

The vocabWords property defines the vocabulary with which the player can refer to the object. The definition of
brassCoin is

brassCoin : Thing '(small) brass coin/groat*coins' 'small brass coin' Q@longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

In this definition the format of the vocabWords property defined through the template is:

(weakToken) adjective noun/noun*plural

A weak token is a word that may be included among the words used to identify an object, but which is not sufficient to
do so by itself. In this case, for example, the player may call the coin SMALL BRASS COIN or SMALL GROAT or
SMALL BRASS and the parser will know what is meant, but the coin will not answer to being referred to simply as
SMALL (as in EXAMINE SMALL or TAKE SMALL). Any word (it need not be the first) included in parentheses in the

Page 63

TADS 3 Tour Guide
vocabWords property of a Thing is a weak token. We have here made SMALL a weak token since it seems too
common a word to stand on its own as defining which object is meant.

The functional difference between adjectives and nouns is that any number of the listed adjectives may be used by the
player to identify the object, but only one of the nouns (but see below for an exception to this). Thus the player may
type X SMALL COIN, or X BRASS COIN or TAKE SMALL BRASS GROAT and the parser will accept all of these as
valid references to the coin. However, if the player types X GROAT COIN or X SMALL COIN GROAT this will not be
taken as referring to the coin. If you felt GROAT COIN was a valid way of referring to this object you could allow it by
adding 'groat' to the list of adjectives as well, i.e.

+ brassCoin : Thing '(small) brass groat coin/groat*coins' 'brass coin'
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

Players can then refer to it as a SMALL BRASS GROAT COIN if they so wish.

The plural (anything after the asterisk) can be used to refer to a number of coin objects collectively. For example, if we
defined a silver coin and a gold coin, and gave them both a plural of 'coins', then, provided all three were in scope, the
word COINS could be used to refer to all three coins at once. For example, X COINS would list a description of all
three coins and TAKE COINS would cause the Player Character to pick up all three coins (assuming that TAKE was a
valid action for all three coins when the command was issued).

And now for the exception to the rule that an object can only match one noun at a time. On occasion one can have an
object that essentially contains two nouns connected by 'of' in its name like 'pile of rubbish' or 'golden banana of
discord'. In this case you simply define both nouns in the normal way; for example, for an object that will match 'golden
banana of discord' you could define:

goldenBanana 'golden banana/discord' 'Golden Banana of Discord'
"It's golden and banana-shaped. "

’

A further complication of the vocabWords property is that you can't usefully change the vocabulary used to refer to an
object by a programming statement that manipulates it directly. For example, if you wanted the player to be able to
refer to the coin as a groat only after something else had occurred (perhaps his examining the coin) you could not
achieve this by writing a statement like:

brassCoin.vocabWords += 'groat';

Since although this code would execute, it would not have the desired effect. Instead the easiest way to add
vocabulary to an object is with the initializeVocabWith() method, which accepts a string argument in the same format
as the vocabWords property, so we could write:

brassCoin.initializeVocabWith ('groat');

To add 'groat' as a noun to the brassCoin's vocabulary. Or even
brassCoin.initializeVocabWith('little shiny object');

To add 'little' and 'shiny' as adjectives and 'object' as a noun.

An alternative is to use cmdDict.addWord(obj, str, voc_prop), e.g. to achieve the same as the previous example:

cmdDict.addWord (brassKey, 'little' &adjective);
cmdDict.addWord (brassKey, 'shiny' &adjective);
cmdDict.addWord (brassKey, 'object' &noun);

Although this is rather more long-winded. You can use the similar removeWord method to take vocabulary away from
an object, which may occasionally be useful. For example, let's suppose that when the coin is first seen lying on the
ground it just appears to be a small brassy object. We want it referred to as a small brassy object until it's examined,
after which it becomes a small brass coin; at that point we no longer want the vague word 'object' to refer to it, but until
then the player can't refer to it as a coin or groat. We can achieve this with the following:-

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "
dobjFor (Examine)

Page 64

TADS 3 Tour Guide
{

action()
{
inherited;
changeName () ;
}
}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord(self, 'object', &noun);
initializeVocabWith('brass coin/groat*coins') ;

}

4.4, initDesc & initSpecialDesc

If the coin starts life lying on the ground as a small brassy object, rather than seeing a description that reads "You see
a small brassy object here" it would be nicer if it read something like "A small brassy object lies on the ground in a dim
corner of the cave. " Likewise, if we examined the coin without first picking it up it would be good if we obtained a
vaguer description such as "It looks like it might be a coin of some sort. " - after all, the standard description we've
given the coin refers to what's on its obverse and its reverse, but how can we see what's on both sides of the coin
while it's still lying on the ground?

To achieve this we can use the initSpecialDesc and initDesc properties. The first of these, initSpecialDesc, is what will
be displayed in a room or contents listing before the object has been moved (while its moved property is nil); initDesc
(if defined) is the description that will be given in response to an EXAMINE command before the object has been
moved (if initDesc is not defined, the ordinary desc property will be used instead). The definition of brassCoin then
becomes:

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "
initSpecialDesc = "A small brassy object lies on the ground in a dim corner of the cave. "
initDesc = "It looks like it might be a coin of some sort. "
dobjFor (Examine)

{

action ()
{
inherited;
changeName () ;
}
}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord(self, 'object', &noun);
initializeVocabWith ('brass coin/groat*coins');

}

’

Note that initSpecialDesc and initDesc are only used so long as moved is nil; as soon as moved is set to true they are
no longer employed. The moved property is set to nil by the mainMovelnto(newContainer), which is called by
movelntoForTravel(newContainer) which is in turn called by movelnto(newContainer), the method most commonly
used to move objects in game code or the library's handling of actions like TAKE. Normally this does not matter, but
there may be occasions when it could defeat the use of initSpecialDesc and initDesc. For example, suppose the
player had to perform some action to reveal the coin, e.g. because it was hidden under something else or falls out of
something else. We might start the coin in another container (or nil) and then move it into the longCave using:

brassCoin.movelInto (longCave) ;

The trouble is that this will set brassCoin.moved to true, so the initSpecialDesc and initExaminedDesc won't be used,
even though this is effectively the first appearance of the coin in the game. The way round this under such
circumstances is to set moved back to nil in your code:

Page 65

TADS 3 Tour Guide
brassCoin.movelInto (longCave) ;
brassCoin.moved = nil;

4.5. globalParamName
The brassCoin is a little unusual in that it changes its name when it is first examined. This really ought to be reflected
in the initSpecialDesc property which could instead have been defined as:

initSpecialDesc = "\"<<aName>> lies on the ground in a dim corner of the cave. "

Then, before the coin is examined it will be listed in a room description as:

"A small brassy object lies on the ground in a dim corner of the cave. "

Whereas if it is examined before being picked up and another LOOK command is issued, it will then appear listed as:
"A small brass coin lies on the ground in a dim corner of the cave."

Which more accurately describes the player's state of knowledge of the object. This is fine, but globalParamName
allows a slightly neater way of doing the same thing. It's really only useful on objects that change their name in the
course of the game (which is likely to be a small minority), and they allow the object to be referred to in a parameter
substitution string. This works by setting the globalParamName property to a single-quoted string that can be anything
we like, but which must be unique (in the realm of parameter names). The globalParamName thus set can then be
used as a message parameter which refers to this particular object, just as the library parameter dobj and iobj refer to
the direct and indirect objects of the current command. This means we can then rewrite initSpecialDesc as

initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave. "

The definition of the brass coin object then becomes:

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave. "
initDesc = "It looks like it might be a coin of some sort. "
globalParamName = 'coin'

dobjFor (Examine)

{

action ()
{
inherited;
changeName () ;
}
}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord(self, 'object', &noun);
initializeVocabWith ('brass coin/groat*coins');

}

4.6. specialDesc

There may be cases where we want something other than the plain-vanilla "You see an xxx here" to appear in room
description lists even after an object has moved. For this purpose an object may be given a specialDesc property as
well as an initSpecialDesc property. If an object has a specialDesc property it is used either if the object has moved
(i.e. its moved property is true) or if there is not also an initSpecialDesc property. This works even for objects that

Page 66

TADS 3 Tour Guide
would not normally be listed, because they are NonPortable. For example, if we wanted the desk in the greatCabin to
appear in the list of the cabin's contents we could give it a specialDesc:

cabinDesk : Heavy 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "
specialDesc = "A large oak desks sits in the middle of the cabin. "

In this case this may a bit redundant, since we have already mentioned the desk in the description of the cabin, and
we would normally want one or the other but not both. But at least the specialDesc property allows us the option of
which way we do it (although since cabinDesk is never moved it would work equally well to use its initSpecialDesc
property). Incidentally, the library does not provide a mechanism for incorporating a specialDesc within the text of a
room description (like an Inform describe routine), but it's fairly easy to achieve this effect if you want it, by defining a
custom property (say inRoomDesc) on the object you want so described, and a custom method on the room in
question, e.g.:

greatCabin : Cabin 'Great Cabin' 'the great cabin'

"The great cabin occupies the entire width of the ship at the stern. The stern
windows aft look out over the water, while there is a solid wooden bulkhead
foreward and a flight of steps leads up to the deck above. <<extras>>"
up = cabinSteps
fore = bulkheadDoor
roomParts = static inherited - defaultAftBulkhead - defaultForeBulkhead

+ greatCabinAftBulkhead + greatCabinForeBulkhead
extras()

{
foreach(local cur in contents)
cur.inRoomDesc;

’

cabinDesk : Heavy 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "
inRoomDesc = "A large oak desks sits in the middle of the cabin. "

’

There is nothing to stop you defining this extras() method on the Room class if you want to make it more general, but
you then have to remember to include <<extras>> at the appropriate point of your room descriptions, or else override
the library code in some such way as:

modify Room
roomDesc () { inherited; extras; }
extras ()

{
foreach (local cur in contents)
cur.inRoomDesc;

This may be more convenient, since it will now work in every room without your needing to add <<extras>> to the
desc property, provided you're happy for the inRoomDescs always to be listed at the end of the room description.
We'll give a more sophisticated version of this modification below.

But to return to specialDesc, we could also use this property to give the coin a more specialized description in a room
listing whenever it's dropped on back on the floor, e.g.

specialDesc = "{A coin/he} lies on the floor. "

Which will give an appropriate description whether the coin has been examined or not. The problem with this is that
we want this specialDescription only to be used if the coin is in fact lying on the floor somewhere, and not, for
example, if it's placed on some other surface or in some other container. The easiest way to achieve this is to override
useSpecialDesc, so that the brassCoin object becomes:

brassCoin : Thing ' (small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave. "
initDesc = "It looks like it might be a coin of some sort. "
globalParamName = 'coin'

Page 67

TADS 3 Tour Guide
specialDesc = "{A coin/he} lies on the floor. "
useSpecialDesc { return location.ofKind(Room) || useInitSpecialDesc(); }

dobjFor (Examine)

{

action ()
{
inherited;
changeName () ;
}
}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord(self, 'object', &noun);
initializeVocabWith ('brass coin/groat*coins');

}

You need to be careful about one thing in particular when overriding useSpecialDesc, however, namely that
useSpecialDesc also determines if the initSpecialDesc is displayed; if useSpecialDesc returns nil when the
initSpecialDesc would otherwise be displayed, the initSpecialDesc won't be used. The safest way not to fall foul of this
problem is to add | | useInitSpecialDesc () to whatever condition you're using to determine whether the
specialDesc should be used, as in the example above (where it is not, in this particular instance, strictly necessary).

To return to our inRoomDesc customization, it would be nice if we could choose the order in which objects using our
custom inRoomDesc property were mentioned in the description of the room that contains them, perhaps by the
addition of an inRoomDescOrder property. To achieve this, we need to make our customization a bit more
complicated:

modify Room

roomDesc () { inherited; extras; finalDesc;}
extras ()
{
if (contents.length==0) return;

local cur;
local vec = new Vector (10);
foreach (cur in contents)
if (cur.propType (&inRoomDesc) 1s in (TypeDString, TypeCode))
vec.append (cur) ;
if (vec.length==0) return;

vec = vec.sort(nil, {a, b: a.inRoomDescOrder - b.inRoomDescOrder });
foreach (cur in vec)
if (gPlayerChar.canSee (cur))
cur.inRoomDesc;
}
finalDesc = nil

’

modify Thing
/* Text to add to the description of the room I'm immediately in.
* If inRoomDesc is a double-quoted string or a method that displays
* a string, this is added to the description of the enclosing room.
*/

inRoomDesc = nil

/* If several objects in the same room have an inRoomDesc, the inRoomDesc
* property can be used to define the order in which they are described.
To have objects included in the room description in the order in which
they are defined in the source file, define inRoomDescOrder = (sourceTextOrder)

*/

inRoomDescOrder = 100

In the event that you wanted to mix in room description text with object description text in some way other than having
all the objects described last, you use the finalDesc property, e.g.:

boringRoom : Room 'Boring Room'
"There's not much here really,

n

Page 68

TADS 3 Tour Guide

finalDesc = "The only way out is to the north. "
+ Decoration 'carvings' 'carvings'
"They're rather amateurish. "
inRoomDesc = "apart from some carvings on one wall. "

This will produce the room description: "There's not much here really, apart from some carvings on the wall. The only
way out is to the north. " This would probably be more useful if the description of the carvings might change, e.g.:

+ Decoration 'carvings' 'carvings'
"They're rather amateurish. "
inRoomDesc = "apart from some <<epithet>> carvings on one wall. "
epithet = (described ? 'amateurish' : 'intriguing')

For a more complex sandwich, you could include SecretFixture objects whose only function was to provide parts of
the room description in the sequence determined by their inRoomDescOrder.

4.7. described

The described property is simply a flag that indicates whether an object has been explicitly examined by the player. It
starts out at nil, and is set to true when the player EXAMINES the object. We can take advantage of this to provide a
slightly smoother response if the player first picks up the coin and only then examines it, by explaining on what is then
the first examination that the 'small brassy object' is in fact a coin; and while we're at it we can also use it to avoid
needlessly calling the changeName() routine more than once (note that this test must come before we call the
inherited handling, or changeName will never be called):

brassCoin : Thing ' (small) brassy object' 'small brassy object' @longCave
"<<described ? nil : 'It turns out to be a coin. '>>
On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave. "
initDesc = "It looks like it might be a coin of some sort. "

globalParamName = 'coin'

specialDesc = "{A coin/he} lies on the floor. "

useSpecialDesc { return location.ofKind(Room) || useInitSpecialDesc(); }

dobjFor (Examine)

{

action ()

{

if ('described) changeName () ;

inherited;
}
}
changeName ()
{
name = 'small brass coin';
cmdDict.removeWord (self, 'object', &noun);

initializeVocabWith ('brass coin/groat*coins');

If this is beginning to seem like a lot of complicated work for one simple coin, don't worry; in practice most object
definitions are not nearly this elaborate, we have made this one so mainly to illustrate what can be done with some of
the methods and properties of Thing, not what must be done on each occasion. Our small brass coin is now well and
truly defined enough, and we shall move on to define some other Things to populate our game world.

Page 69

TADS 3 Tour Guide

4.8. bulk and weight

The bulk and weight properties are fairly self-explanatory, in that they can be used to hold numbers (which must be
integers) representing the bulk (volume) and weight of the item according to any scheme the game author finds
convenient.

One use of these properties, which is normally deprecated in modern IF, is to limit what the player character can carry,
either by weight or volume. This can be done by setting the player character's bulkCapacity and weightCapacity
properties to some value lower than the default of 10000. Conversely, if you are going to use a large range of
numbers for the bulk property of you objects, you might want to raise its maxSingleBulk property to something larger
than its default value of 10. Although inventory puzzles are now unpopular, it is more acceptable to limit what a PC
can carry round in his or hands if you provide something (such as a bag or sack) he or she can use to transport
objects that exceed the capacity of his or her hands.

Another use for the bulk property might be as a rough and ready way of preventing the absurdity of allowing an
obviously small container like a purse contain one or more obviously large objects like a packing case or a pair of
oars; for this reason alone you might want to give at least a little thought to the bulk you give your objects and the
bulkCapacity you give any container objects. At the very least it would be odd to have a container whose bulkCapacity
exceded its bulk.

Apart from limiting what a player can carry, weight could be used to limit what various platforms and passages can
support; you could, for example, have a flimsy bridge that collapses if the total weight it is made to bear excedes a
certain amount. In this game, however, we shall use weight for a different kind of puzzle, namely one that involves
putting exactly the correct total weight (which in this game will be 54) on a stone altar in order to open a secret door
behind it. Any combination of objects that weigh 54 in total will trigger the secret door, and in due course we shall
provide a weighing machine for the player to find out what any portable object weighs. But to make sure the problem
is soluble, we shall also provide a set of objects that weigh 1, 2, 4, 8, 16 and 32 units, which guarantees that (once all
these objects have been collected) any weight up to 63 units can be formed by some combination of these objects (to
obtain 54 the player will need 32 + 16 + 4 + 2). Each of these objects will be a square tablet, each made of some
different material. One face of each of these objects will contain a grid of 25 (5 x 5) letters; when the complete set is
collected these inscriptions will, when deciphered, contain the instruction to place 54 pounds on the altar. An
inscription on a tombstone outside the temple (in which the altar is located) will provide a clue how the inscriptions are
to be deciphered.

Since there will be several of these tablets in the game, all with similar descriptions, it will be convenient to define a
Tablet class:

class Tablet : Thing
desc = "\"<<theName>> is about eight inches square and an inch thick.
On it is inscribed:\b<<inscription>>\b"
bulk = 4

We can then define our first tablet and place it in longCave:

brassTablet : Tablet 'brass tablet*tablets' 'brass tablet' @longCave

inscription = "F T M T R\nA O O I U\nS TUN I\nT I L RE\nRADAR"
initSpecialDesc = "A brass tablet rests by the ladder. "
weight = 4

’

We'll explain how the coded message works later; in the meantime you're welcome to try to work it out for yourself!

4.9. setSuperclassList

It's conceivable that we could have an object that starts out as one kind of thing, but later becomes another. For
example we might have a component of something that later proves to be detachable. For example, suppose that the
wooden panel becomes detached from the deck rail when it is struck with a heavy hammer. It might seem that this
would be impossible to implement since once we have defined something as a Component, it is fated to remain a
Component for the duration. But in fact this is not the case, since in TADS 3 it is possible to change the class list of an
object at run-time, using the method setSuperclassList(new class list). For example, to make the large wooden
panel come free when struck by the hammer we could write:

Page 70

TADS 3 Tour Guide
+ Component 'large wooden panel' 'panel'

dobjFor (AttackWith)
{

verify ()
{
if (getSuperclasslList () != [Component])
illogicalAlready ('You've done it enough damage already! '");

}

action ()
{
if (gIobj == heavyHammer)
{
setSuperclassList ([Thing]) ;
movelInto (getOutermostRoom) ;
"The hammer strikes the panel with such force that the panel comes free of the
rail and falls to the deck. ";
}

else
"{The iobj/he} simply bounces off the panel. ";

Note the use of getSuperclassList() to test what class or classes the panel currently belongs to.

The setSuperclassList method can be very useful in cases such as this, where the alternative of determining the
behaviour of the temporary Component (or Fixture or whatever it may be) by testing the value of some flag in lots of
different places would be tedioius, long-winded and error-prone. Nevertheless, it's a technique you'll probably want to
use sparingly, and with care (we shan't actually be using it at all in The Quest of the Golden Banana - the immediately
preceding code is hypothetical rather than something to be added to the game). The effect of setSuperclassList() is
that any methods or properties inherited by the object in question are now inherited from the new list of superclasses,
but that properties and methods defined on the object itself remain unaffected (unless they explicitly inherit behaviour).
A corresponding transformation will be wrought on anything that inherits from an object (or class) on which
setSuperclass list is invoked. Obviously this is a tool that needs to be used with some care; it would probably be
foolish and reckless to use it to transform a Flashlight into a Actor, or a ComplexContainer into a Candle for example.
On the other hand, it may often be useful to transform, say, a Fixture into a Thing (when something previously fixed
becomes portable) or a Thing into a Distant (when a portable object goes out of reach - say because it's a flag and
we've just hoisted it to the top of the pole).

4.10. Readable

A Readable, as its name suggest, is an object that can be read. In fact you can READ a Thing - it has precisely the
same effect as using EXAMINE on it. The main difference between a Thing and a Readable is that on a Readable you
can program different responses to READ and EXAMINE. EXAMINE Readable results in the display of its desc
property; but READ Readable results in the display of its readDesc (assuming readDesc is defined, i.e. non-nil,
otherwise the desc property is displayed).

The other main difference between a Readable and a Thing is that a Readable is regarded as the more logical target
of a READ command, so that other things being equal, the parser will choose a Readable object over other kinds of
Thing when disambiguating the direct object of READ (i.e. deciding which object the player meant when the command
is ambiguous).

Since the tablets all contain squares of letters, they could reasonably be regarded as Readable. We could therefore
redefine the Tablet class as:

class Tablet : Readable

desc = "\"<<theName>> is about eight inches square and an inch thick. <<readDesc>>"
readDesc = "On it is inscribed:\b<<inscription>>\b"
bulk = 4

Page 71

TADS 3 Tour Guide

411. Food

The Food class, as its name suggests, is used for things that can be eaten. By default, when eaten, an object of class
Food simply disappears (with a default message telling the player that he or she has eaten it). Since food can be
eaten it can also be tasted, or smelt. For that matter, it can be touched or felt. To describe what happens when we
TASTE it, SMELL it or FEEL it we can use its tasteDesc, smellDesc and feelDesc properties. If you really want to
you can even define soundDesc to define a response to a LISTEN TO command. Actually, all four of these properties
exist on Thing, but this seemed a convenient point at which to introduce them. Later on we shall be looking at more
sophisticated ways of handling sensory information. For now we'll just define a banana we'll leave in squareCave:

Food 'banana' 'banana' @squareCave
"It's yellow, about six inches long, and slightly curved. And It looks
reasonably fresh. "

tasteDesc = "It's distinctly banana-flavoured. "
smellDesc = "It has a kind of faint, fruity smell. "
feelDesc = "The banana skin feels firm but smooth. "
soundDesc = "The banana is strangely silent. "
initSpecialDesc = "Someone has left a banana here. "

412. disambigName

If you haven't tried compiling and running the game for a while, now would be a good time to try. Try going into the
square cave (using the MEGA or FIAT LUX command to light your path) and then try TASTE BANANA, SMELL
BANANA, FEEL BANANA and LISTEN TO BANANA. Then try taking the banana, moving west back into the main
cave, dropping the banana, and then trying to take it again with a TAKE BANANA command. At this point you should
encounter the following problem:

>take banana
Which banana do you mean, the banana, or the golden banana?

>banana
Which banana do you mean, the banana, or the golden banana?

>

Since we have called our edible banana simply 'banana’ there is nothing we can call it that will distinguish it from the
golden banana, so in this situation nothing we type will enable us to take the (edible) banana. We could, of course,
add edible to its vocabWords, but that won't be apparent to the player, and actually calling it 'edible banana' in its
name property would look a bit clumsy. In a case like this the solution is to give it a disambigName property, a name
that will be used solely for the purpose of disambiguation. We might amend our banana thus:

Food ' (edible) banana' 'banana' @squareCave
"It's yellow, about six inches long, and slightly curved. And It looks
reasonably fresh. "

tasteDesc = "It's distinctly banana-flavoured. "
smellDesc = "It has a kind of faint, fruity smell. "
feelDesc = "The banana skin feels firm but smooth. "
soundDesc = "The banana is strangely silent. "
disambigName = 'edible banana'

initSpecialDesc = "Someone has left a banana here. "

’

If you now compile and run the game again, you'll see how using disambigName (coupled with adding 'edible' to the
banana's vocabulary) has solved the problem.

Page 72

TADS 3 Tour Guide

4.13. Wearable

A Wearable is simply something that can be worn by an actor. Try defining the following:

cap : Wearable 'sailor\'s cap' 'sailor\'s cap' @mainCave
"It's a large round hat with a white top and a small blue peak. "

’

Now recompile the game, go to the mainCave, and try WEAR CAP, INVENTORY, REMOVE CAP, INVENTORY (four
separate commands).

The most interesting methods and properties that Wearable introduces are wornBy, isWorn() and isWornBy(actor).
None of these are properties or methods you'd normally want to override, but you might have occasion to test their
values. wornBy returns the actor object that is currently wearing the Wearable (or nil if it is not being worn), isWorn()
returns true if the Wearable is being worn and nil otherwise, and isWornBy(actor) similarly tests for its being worn by
a specific Actor. We shall make use of isWorn() shortly, when we add some complications to this cap. Also, we shan't
be leaving this cap in mainCave, but it'll have to stay there till we create a new location for it.

Page 73

TADS 3 Tour Guide

5. Containers

5.1. Containers - Introduction

For the purposes of our guided tour of the TADS 3 library, "containers" include every type of physical object that can
physically contain another in some way, not only in the obvious sense that the contained object is inside the container,
but also where it is on, under or behind the container.

Another way of defining containers in the TADS 3 library is as descendants of the BulkLimiter class:

BulkLimiter
BasicContainer
Container
Booth
Dispenser
Matchbook
OpenableContainer
KeyedContainer
LockableContainer
RestrictedContainer
SingleContainer
StretchyContainer
SpaceOverlay
RearContainer
RearSurface
Underside
Surface
Bed
Chair
Platform
NominalPlatform

Some of these will be left to later chapters, since they inherit from other classes we haven't dealt with yet (e.g. Bed,
Chair and Platform are all types of NestedRoom, which we'll deal with later, and we'll need to delay discussion of
KeyedContainer until we discuss locks and keys in the next chapter). In the present chapter we'll cover the simpler
kind of containers. We'll also be covering the following functionally related classes:

ComplexComponent
ComplexContainer

5.2. BulkLimiter

BulkLimiter is the common base class for containers and surfaces: things that have limited bulk capacities. You
probably won't have cause to use this class directly; you'll usually use subclasses such as Surface and Container
instead.

BulkLimiter defines the following properties that are inherited by its subclasses:

» bulkCapacity - the total aggregate bulk that can be contained in this object (by default, 10000).

* maxSingleBulk - the maximum bulk that any individual item inserted into the BulkLimiter may have (by default 10).

» revealHiddenltems - a flag that determines whether any Hidden items will be revealed when this BulkLimiter's
interior is examined (i.e. when look in, under, or behind will cause the discover method of any item of class Hidden
to be called). By default this is true, representing the fact that when we look in, under or behind something we
normally see what was there even if we didn't before we looked; if desired this can be set to nil so that Hidden items
remain hidden.

» tooFullMsg - The message that is displayed when adding a new object would exceed the BulkLimiter's
bulkCapacity. This may be overridden on subclasses.

» becomingTooFullMsg - the message property to use when doing something to one of our contents would cause
our overall contents to exceed our capacity.

Page 74

TADS 3 Tour Guide

» becomingTooLargeMsg - the message property to use when doing something to one of our contents would make
it too large to fit all by itself into this container (that is, it would cause that object's bulk to exceed our
maxSingleBulk).

BulkLimiter also overrides the notifylnsert() method to check whether an object will fit into BulkContainer (which it
won't if either the aggregate bulkCapacity or the individual maxSingleBulk would be exceeded by the insertion).

5.3. Surface

Perhaps the simplest kind of container, or BulkLimiter, is the Surface, which is simply something you can put things
on. The description of entranceCave mentions a narrow ledge carved into one wall, and this would be a good
candidate for a Surface; in this case the Surface will also be a Fixture since it's plainly not something we can carry
around:

Surface, Fixture 'narrow ledge' 'narrow ledge' @entranceCave
"It's about a foot wide and two feet long. "
bulkCapacity = 25

’

Setting the bulk capacity to 25 isn't essential here, but since the ledge is described as narrow, there must presumably
be some limit to how much can be placed on it. If you like you can try running the game and putting things on the
ledge.

Another good candidate for a Surface is the desk in the cabin, which is plainly something one could put things on.
While we're at it, we'll put something on it:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "
inRoomDesc = "A large oak desks sits in the middle of the cabin. "

+ chart : Readable 'chart' 'chart'
"It appears to be a chart of the lake. "

readDesc = "According to the chart the lake is roughly circular. There appears to
be one landing spot each on the north, south, east and west shores of the lake. "
initSpecialDesc = "A chart lies open on the desk. "

’

Note the use of the + location here; anything located in a Surface is considered to be on it. Technically this should
cause a problem for our previously defined Button object (used to unlock the hidden door in the bulkhead), but the
way we've described the desk and the button, together with the fact that the button is a Component means that we
can in fact get away with it, although later we'll look at a way of tying up this potential loose end.

5.4. BasicContainer

Next to a Surface, the simplest kind of BulkLimiter is a Container, which, as you'd expect, is simply something that can
contain other things. The main difference between a Surface and a Container is that whereas the contents of a
surface are regarded as being on the surface, the contents of a Container are regarded as being in the Container.

The other main difference between a Container and a Surface is that, unlike a Surface, a Container can be either
open or closed. If a Container is open its contents are visible and can be removed from the Container, while other
things can be inserted into the Container (subject to restrictions of bulk and so forth). If, on the other hand a Container
is closed, nothing can be inserted into or removed from it, and, unless the Container is made of some transparent
material, its contents will be invisible.

A basic container is an object that can enclose its contents. This is the core of the Container type, but this class only
has the bare-bones sense-related enclosing features, without any action implementation. This can be used for cases
where an object isn't meant to have its contents be manipulable by the player (so we don't want to allow "put in" and
so on), but where we do want the ability to conceal our contents when we're closed.

BasicContainer defines a few properties of its own, of which the most significant are:
Page 75

TADS 3 Tour Guide

» isOpen - defines whether this BasicContainer is open or closed. By default, this property is true. An open box, for
example, would have isOpen true, whereas it would be nil on a sealed glass tube.

» material - the material from which this container is made; this basically defines whether and how an object in the
container can be sensed if the container is closed. The default is adventium, which prevents an object in a closed
container being sensed at all. If the material were glass, we could see what was inside, but not otherwise interact
with it. It it were paper, we could smell or hear an object in the closed container (assuming it was noisy and smelly)
but not see or touch it.

In practice, it's hard to think of examples where this class would be useful (as opposed to one of its subclasses). One
possible use would be to have an object permanently encased in a glass container - but then there would seem to be
no reason not to have a single object which described itself as a glass container encasing a dead butterfly or whatever
it is. On the other hand, if the container can be broken open at some point and the contents removed, never to be
replaced, one could use a BasicContainer for that.

To illustrate the fact that if a closed container is transparent you can see its contents but not touch them (and hence
not manipulate them), let's create a sealed transparent container with something inside. To make the jar transparent
we override its material property to glass.

glassJar : BasicContainer 'glass Jjar' 'glass jar' @mainCave
"It seems to be sealed fast. "
isOpen = nil
bulkCapacity = 4
material = glass

+ hexCrystal : Thing 'hexagonal blue crystal' 'blue crystal'
"The crystal is almost cylindrical, except that it has a hexagonal
cross—-section. It's about eight inches long and pulsates with
a faint blue light. "
brightness = 1
bulk = 2
weight = 2

’

Note that since we have described the crystal as pulsating with a faint blue light we give it a brightness of 1 - enough
to make it self-illuminating in the dark but not enough for it to illuminate anything else. To see the effect, try carrying
the crystal (by carrying the jar) into a dark room. We'llimplement a way of getting the crystal out of the jar shortly.

5.5. Container

Although the plain Container class contains no handling for dealing with OPEN and CLOSE commands from the
player (for that you need OpenableContainer or one of its subclasses), it does have an isOpen property that can be
set and manipulated by the author in game code, and, unlike BasicContainer, a Container does allow things to be put
inside it in response to a PUT IN command.

One item we have already defined that could be used as a Container, though not obviously so, is the sailor's cap. It
won't have a huge capacity, but a cap ought to be able to contain a few small items. Also, it will have the interesting
property that it will be closed when worn and open otherwise.

cap : Wearable, Container 'sailor\'s cap' 'sailor\'s cap' @mainCave
"It's a large round hat with a white top and a small blue peak. "
bulkCapacity = 3
isOpen { return 'isWorn(); }

’

Try compiling and running the game, then move to mainCave and experiment with using the cap as a Container when
it is and isn't worn (for now you can use the boulder as the object to put in it, though this isn't very realistic). Everything
should work fine until you try to put the boulder in the cap while the player character is wearing the cap, whereupon
you'll get:

>put boulder in cap
You can't move that through the sailor's cap.

Page 76

TADS 3 Tour Guide

Although far from disastrous, this is certainly less than ideal. Although you could override the message, a neater
solution is to add objNotWorn to the preconditions for putting anything in the cap:

cap : Wearable, Container 'sailor\'s cap' 'sailor\'s cap' @mainCave
"It's a large round hat with a white top and a small blue peak. "
bulkCapacity = 3
isOpen { return !isWorn(); }
iobjFor (PutIn) { preCond = static inherited + objNotWorn }

’

Then, when the player attempts to put something in the cap while it is worn, a REMOVE CAP command is carried out
as an implicit action and the PUT IN command follows (try it and see).

5.6. OpenableContainer

If, unlike the cap and the glass jar in the last two sections, you want a container that can be opened and closed by the
player, then you need to use OpenableContainer (or one of its lockable subclasses, which we'll be encountering later).
As an example of a simple OpenableContainer we'll leave a first aid kit on the ledge in entranceCave and put a couple
of items in it. For convenience, the definition of the ledge is repeated to show the nesting relationship using the +
syntax:

Surface, Fixture 'narrow ledge' 'narrow ledge' @entranceCave
"It's about a foot wide and two feet long. "
bulkCapacity = 25

’

+ firstAidKit : OpenableContainer 'small white first aid box/kit' 'first aid kit'
"It's made of some kind of white plastic and is about nine inches long. The 1lid
is marked with a broad red cross. "

initSpecialDesc = "A small white box lies on the ledge. "
bulkCapacity = 3
bulk = 4

++ syringe : Thing 'syringe' 'syringe';

++ stickingPlaster : Thing 'sticking adhesive plaster' 'sticking plaster';

Note the use of the + notation to place the firstAidKit on the ledge, and the ++ notation to indicate a second level of
nesting to put objects in the firstAidKit. The use of initSpecialDesc means that it will be described as a 'small white
box' when the player first encounters it, but will be listed as 'a first aid kit' once the player picks it up, which seems
reasonable: its vocabulary has been defined so that it will answer to either appellation. Since it is only a small box we
give it quite a small bulkCapacity, and a bulk that's just a bit bigger than its capacity. We also place a couple of items
in it, but their definition is minimal for now - we'll be fleshing them out in due course.

5.7. notifylnsert & notifyRemove

We are now in a position to implement the scales we can use for weighing the various objects in the game (and so
ultimately solve the altar problem that is yet to come). Scales obviously register a new reading each time something is
put on them or removed from them, and the best way to test for such occurrences in the TADS 3 library is by using the
notifylnsert(obj, newCont) and notifyRemove(obj) methods. These have the advantage that they'll also respond to
things being inserted into or removed from contents of contents and so forth. In the case of the scales, this means that
if | place a box on the scales and then put things in the box or take them out again, the scales' notifylnsert and
notifyRemove methods will still be called, so a change in the total weight on the scales will still be registered, which is
what we want.

To get at the total weight on the scales we can simply use the getWeight method. This returns the total weight of an
object and all its contents, so we need to subtract the scales own weight to get the total weight of all the objects
placed on it. Since the description of the scales states that the maximum weight it can register is 100 pounds, we need
to ensure that it never registers more, however much is placed on the scales. To get at the reading shown by the
scales we should thus define:

Page 77

TADS 3 Tour Guide
reading = min((getWeight - weight), 100)

There is one major complication, however, and that is that notifylnsert and notifyfRemove are called before the insert
or remove action is completed, so that at the time they are called, the reading property will register the weight on the
scales before the change, not after it as we want. There are probably several ways round this, but the one we have
adopted here is to use the afterAction() method. This is called on all objects (but not rooms) in scope after an action
is completed. To achieve the result we want here, we get afterAction to test whether the weight on the scales has
changed, and only if it has to display the new weight (and record it as the current weight).

The (somewhat complicated) definition of our set of scales is thus:

scales : Surface 'large weighing scales/pan/dial/needle' 'scales' QentranceCave
"These scales comprise a large weighing pan fixed over a square body, on which
is a large dial with a needle that is currently pointing to <<reading>>. The
numbers round the dial range from 0 to 100, and according to the inscription
on the dials the unit of measure is pounds. "
reading = min((getWeight - weight), 100)
weight = 6
isPlural =
bulk = 10
bulkCapacity = 50
iobjFor (PutIn) asIobjFor (PutOn)
notifyRemove (ob7j)
{
weighMsg = 'As you remove '+ obj.theName;
}
notifyInsert (obj, newCont)
{
inherited(obj, newCont);
weighMsg = 'As you put ' + obj.theName + ' ' + newCont.putInName () ;
}
showWeight ()
{
"<<weighMsg>> the needle on the dial swings round to <<reading>>. ";
}
afterAction ()
{
if (reading != oldWeight)
{

true

showWeight () ;
oldWeight = reading;
}
}
oldWeight = 0
weighMsg = nil

’

There are a number of other points to note here. The first is the use of the isPlural property. Although the set of
scales is in fact a single object, its name property is 'scales’, which is grammatically plural; we therefore set isPlural to
true to ensure that in any message the parser generates about this object the verb will agree in number with its
grammatical subject (e.g. to ensure we don't get "The scales does not appear to be edible” when what we want is
"The scales do not appear to be edible"). The second is that in this case we can reasonably make the bulkCapacity
bigger than the bulk; there's no reason why a object placed on the scales should not be bigger than the scales. The
third is that since the scales are defined as having a pan the player might reasonably PUT X IN PAN as well as PUT X
ON SCALES; to handle that we use iobjFor(Putln) aslobjFor(PutOn) to translate a PUT IN command to a PUT ON
command. The notifylnsert() method is already defined on BulkLimiter; it already contains code (which, among other
things, checks that the object can be inserted and aborts the action if, for example, it is too bulky), so we must call the
inherited method. We use the two notifyXXX methods simply to start constructing a string that will be displayed if the
weight on the scales changes. The notifylnsert method also makes use of the putinName property which returns
something like 'in the container' or 'on the surface' as appropriate. Finally, we ensure that the afterAction() method
only does anything if the weight on the scales has actually changed. Note again that afterAction is called after any
action performed while the object is in scope - this ensures that only actions that change the weight on the scales are
acted upon here.

At this point it will be worthwhile to recompile and run the game to test the scales out. Try putting the first-aid box on
the scales, then open the first aid box and take the bandage; then try PUT SYRINGE ON SCALES; finally, obtain the
brass tablet and try putting it first in the first-aid box and then in the pan. Hopefully, everything should work as
expected.

Page 78

TADS 3 Tour Guide

One small task remains, and that is to put the scales in a plausible locations; we'll place them in a cupboard in a galley
aboard the ship, which means we first need to create the galley and the cupboard:

galley : DarkCabin 'Galley' 'the galley'
"It looks like the galley has been more or less stripped bare. There's a work
surface with a cupboard underneath it, and not much else. "
aft = crewQuarters

;
+ Surface, Fixture 'work surface' 'work surface';

+ galleyCupboard : OpenableContainer, Fixture '(galley) cupboard' 'cupboard';

Then change the first line of the definition of the scales to read:

scales : Surface 'large weighing scales/pan/dial/needle' 'scales' @galleyCupboard

Clearly, the definition of crewQuarters needs to be changed to reflect this new state of affairs, but we'll attend to that in
the next section.

5.8. LockableContainer

A LockableContainer is simply an OpenableContainer that can also be locked and unlocked. This is not as useful as it
might sound since a LockableContainer can be locked and unlocked simply by the player issuing LOCK LOCKER and
UNLOCK LOCKER commands. Moreover, even if a LockableContainer starts locked, an attempt to OPEN it will result
in an implicit UNLOCK command, so that in practice, a LockableContainer behaves much like an OpenableContainer.
If you want a container that's locked and unlocked with a key you need to use KeyedContainer, which we'll come to
presently.

A simple example of LockableContainer might be locker, which we'll put in the crew quarters:

locker : LockableContainer, Fixture ' (crew) locker' 'locker' (@crewQuarters
"The locker is fixed firmly to the bulkhead. "
bulkCapacity = 15
disambigName = 'crew locker'
initiallyLocked = true

Note that if we want a LockableContainer to start locked, we need to set its initiallyLocked property to true. The
library does this for Door and IndirectLockable, but you need to do it for anything else (except subclasses of Door, of
course).

The sailor's cap would be a good thing to put in the locker, so let's amend its starting location:

cap : Wearable, Container 'sailor\'s cap' 'sailor\'s cap' @locker
"It's a large round hat with a white top and a small blue peak. "
bulkCapacity = 3
isOpen { return !isWorn

() ;
iobjFor (PutIn) { preCond =

}
static inherited + objNotWorn }

At this point we should update the definition of crewQuarters to reflect the presence of the locker and the galley further
forward:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted, apart from a single locker
fixed to the bulkhead. There's an exit back aft and a ladder leading down into
the hold. Another exit leads foreward. "
down = holdLadderDown
aft = greatCabin
fore = galley
cannotGoThatWayInDark ()

Page 79

TADS 3 Tour Guide

To make the lock on the locker a bit more worthwhile, we'll suppose that it's fastened by a latch that's rusted shut, and
which will only open once we have poured some oil on it. To do this we add a custom oiled property, which we use in
the makeLocked method. This method is called in response both to a LOCK and an UNLOCK command; its stat
parameter is true if we want to lock something and nil if we want to unlock it. We can use this method to abort any
attempt to lock or unlock the locker until the latch has been oiled. Finally, we add some handling for the PourOnto
command on the latch, so that if this latch is the indirect object of PourOnto and the direct object is the oilcan, the
oiled property is set to true (which will then allow the locker to be unlocked and opened). Since the player may also try
to PULL or PUSH the latch, we add handling for that, making the two commands equivalent. We also redirect any
attempts to OPEN, CLOSE, LOCK or UNLOCK the latch back to the locker object.

locker : LockableContainer, Fixture ' (crew) locker' 'locker' (@crewQuarters
"The locker is fixed firmly to the bulkhead. Its door is fastened by a simple
latch mechanism, though the latch looks a bit rusty. "
bulkCapacity = 15

disambigName = 'crew locker'
initiallyLocked = true
makeLocked (stat)

{
if (!lockerLatch.oiled)

{
reportFailure ('The latch is stuck fast. ');

exit;
}
inherited(stat) ;
}
NameAsOther, SecretFixture targetObj = locker location = crewQuarters;

+ lockerLatch : Component ' (locker) latch' 'latch'
"The latch looks a bit rusty. It's currently in the <<locker.isLocked
? nil : 'un' >>locked position. "
iobjFor (PourOnto)
{
verify () { }
action ()
{
if (gDobj == oilCan)
{

"You pour some oil onto the latch. ;
oiled = true;
}
else
"It doesn't seem to do much. ";
}
}
dobjFor (Push) asDobjFor (Pull)
dobjFor (Pull)
{
verify () {}
action ()
{
locker.makeLocked (!locker.isLocked) ;
"This <<isLocked ? nil : 'un'>>locks the locker. ";
}
}
oiled = nil
disambigName = 'locker latch'
dobjFor (Open) remapTo (Open, locker)
dobjFor (Close) remapTo(Close, locker)
dobjFor (Lock) remapTo (Lock, locker)
dobjFor (Unlock) remapTo (Unlock, locker)

’

A fatally easy mistake to have made here would have been to have made the latch a Component of the locker object.
The problem with this would have been that this would have placed the latch inside the locker, and therefore not
available until the locker was opened (and it's impossible to open the locker without access to the latch, so we'd be in
a pretty fix!). For that reason we define another object for the latch to be a Component of (a better way would have
been to make the locker a ComplexContainer, but we haven't come to those yet). The player will never interact with
this object directly, so it needs no vocabulary. We want it to appear to be the locker when, for example, the player
Page 80

TADS 3 Tour Guide

attempts to TAKE THE LATCH, so we make it a NameAsOther (a mix-in class) and set its targetObj property to the
latch; the effect of this is that any parser messages referring to this object will describe it in exactly the same way as

the latch. We also make the object a SecretFixture, since it is an object we need for internal implementation, but not
one the player will ever interact with directly.

Note that on the locker we use exit to abort the UNLOCK command if latch.oiled is nil, and the reportFailure
macro to explain why the unlock command has failed. The latter is important since the UNLOCK might be an implicit
action when the player tries to OPEN the locker; using reportFailure here ensures that the implicit action report the
player sees then says "(first trying to unlock the locker)" rather than "(first unlocking the locker)". The PourOnto
handling is fairly straightforward: it tests whether the direct object (gDobj) is the oil can, and if so displays an
appropriate message and sets the oiled property to true, otherwise it displays a non-commital message about not
much happening.

We also need to define the oil can. Here we'll provide the minimal definition to do the job. We'll elaborate it later when
we use the oil for other purposes (such as fuel for a lamp).

oilCan : Thing 'oil can/oilcan' 'can of oil' (@secretPassage
"It's a can full of oil. "
initSpecialDesc = "An old oil can lies abandoned on the ground. "

dobjFor (PourOnto) { verify() { } }

5.9. RestrictedContainer

A Restricted Container is a container that will accept only a limited set of items, defined by the game author.

You may recall that we defined a hexagonal hole in the panel fixed to the quarterdeck rail. This is an obvious
candidate for a restricted container, since, as you may by now have guessed, it is designed solely for the hexagonal
crystal (for some reason known only in IF Heaven, the ship will only sail when the crystal is in its slot). The definition of
the hole needs to be put directly after that of the panel, which we therefore repeat for convenience:

+ Component 'large wooden panel' 'panel'
"The panel seems to have something to do with sailing the ship. A wheel and a lever
are mounted on it, and between them is a hexagonal aperture. "

’

++ hexHole : RestrictedContainer, Component 'hexagonal hole/aperture' 'hexagonal hole'
validContents = [hexCrystall]

’

Note that we specify what can be put in the hole using its validContents property, which contains a list (here
containing only a single item) of everything that can be validly inserted. In some cases it might be more convenient to
override a RestrictedContainer's canPutIn(obj) method. For example if we had defined a Widget class and were now
defining a widgetBox that could only take Widgets, we might define its canPutin method as

canPutIn(obj) { return obj.ofKind (Widget}; }

The only difficulty we have right now is that the hexagonal crystal is trapped inside a glass jar, so we can't try inserting
it in the hole. Let's assume that one way of getting it out is by cutting the jar open with something suitably hard. First,
we'll define a couple of potential cutters (which will also figure later in the game for other purposes):

diamond : Thing 'sparkling diamond' 'diamond' @pathEnd
"It looks like the genuine article. "
iobjFor (CutWith) { verify() { } }

’

diamondRing : Wearable 'diamond ring' 'diamond ring'
"It's a fine platinum band with a sparkling solitaire diamond. "
iobjFor (CutWith) { verify() { } }

’

Don't worry that we haven't given any location to the diamondRing, the reason will become apparent in due course.
Now we can amend our definition of the class jar to allow it to be cut open:

Page 81

TADS 3 Tour Guide

glassJar : Container 'glass jar' 'glass jar' @mainCave
"It <<isOpen ? 'has been cut open' : 'seems to be sealed fast'>>. "
isOpen = nil
bulkCapacity = 4
material = glass
canBeCutBy = [diamond, diamondRing]
cannotOpenMsg = (isOpen ? 'It\'s already been cut open'
'{You/he} can\'t see any way to open it. ')
notAContainerMsg = iobjMsg(isOpen ? 'Now that it\'s been cut open, it
won\'t hold anything. ' : 'There\'s no way
{you/he} can put anything inside the sealed jar. ')
dobjFor (CutWith)
{
verify ()
{
if (isOpen) illogicalNow('The glass jar has already been cut open.');
}
check ()
{
if (canBeCutBy. indexOf (gIobj) == nil)
failCheck ('{You/he} can\'t cut it with {that iobj/him}. ');
}
action()
{
"{You/he} cut{s} open the glass jar. ";
isOpen = true;
}
}

’

Note that canBeCutBy is not a library property, it is one we have defined ourselves. It makes it easy to add to the list
of items that can be used to cut open the glass jar, should we think of any others at later stage. The failCheck ()
method (a method of Thing) was introduced in version 3.0.9. Check methods often contain code like this:

check ()
{

if (someCondition)

{
reportFailure ('There\'s some reason why that won\'t work. ');
exit;

Where the reportFailure macro tells the parser that the proposed action has failed for some reason (though in
practice you could use a double-quoted string) and the exit macro terminates processing of the command on this
object (and so prevents the action routine from being run). Since this coding pattern is so common, in TADS 3.0.9 it
can now be shortened to:

check ()
{

if (someCondition)
failCheck ('There\'s some reason why that won\'t work. ');

Which does exactly the same thing. So the check routine on glassJar is exactly equivalent to:

check ()
{
if (canBeCutBy.indexOf (gIobj) == nil)
{
reportFailure (' {You/he} can\'t cut it with {that iobj/him}. ");
exit;

}
It's just that using the failCheck() method enables you to code this a little more concisely.

Note also that we have made use of the ability introduced in TADS 3.0.6n to override library messages with our own
versions (in this case cannotOpenMsg and notAContainerMsg) to display something more meaningful in this particular

Page 82

TADS 3 Tour Guide

case. Note also that in the case of notAContainerMsg we have used the iobjMsg () macro (new in version 3.0.9),
because we only want the customized response to be used when the glass jar is used as the indirect object of a
command. If we didn't do that we'd see something like:

>PUT COIN IN GLASS JAR
There's no way you can put anything inside the glass jar.

>PUT GLASS JAR IN COIN
There's no way you can put anything inside the glass jar.

This is because unless we specify otherwise, our overridden message will be used whenever the object on which it is
overridden is involved in the corresponding command (in this case, a PUT IN command), whether as the direct object
or the indirect object. To avoid that we could write:

notAContainerMsg = (globj == self ? 'My custom message' : nil)

Since (as of TADS 3.0.9) if a message property returns ni1 this is taken as meaning "use the standard library
message". The iobjMsg macro simply makes this a bit easier; allowing us to write the above line as:

notAContainerMsg = iobjMsg('My custom message')

Which compiles to exactly the same code. If we wanted our custom message to work only when the object its defined
on is the direct object of a command, we'd use the dobjFor macro instead; the following two lines are exactly
equivalent:

notAContainerMsg = dobjMsg('My custom message')
notAContainerMsg = (gDobj == self ? 'My custom message' : nil)

Note that there is no need to use this for a message property for a verb that only take a direct object; e.g., if we define
a custom cannotOpenMsg property there's no need to use the dobiMsg macro since an object can never be the
indirect object of an OPEN command.

You may wonder how we know what names to use for these properties: one answer is to look in the library source
code to see what message properties are used in the verify(), check() or action() methods of the verbs for which you
want to customize the responses.

For example, if we look at the definition of Thing in the library code, we find the following handling for when a Thing is
the indirect object of a Putln command:

iobjFor (Putln)

{
preCond = [touchObj]
verify()

{
/* by default, objects cannot be put in this object */
illogical (¬AContainerMsqg) ;

}

This means that, left to its own devices, a Thing will respond to an attempt to put anything inside it with the message
defined in the notAContainerMsg of the playerActionMessages object. If, however, as here, we define our own version
of notAContainerMsg on either the direct or indirect object involved in the action, our own version will be used in
preference (subject to our use of the iobjMsg and dobjMsg macros or their long-winded equivalents).

You may, however, find it easier to use the TADS 3 Action Messages quick-reference chart, which you can download
either from www.tads.org/t3dl/TemplatesQref.zip or from users.ox.ac.uk/~manc0049/TADSGuide/QRefs.zip.

Note that as of TADS 3.0.10 there are also RestrictedSurface, RestrictedUnderside, RestrictedRearSurface and
RestrictedRearContainer classes which work analogously to RestrictedContainer except that they relate respectively
to Surface, Underside, RearSurface and RearContainer. All these Restricted\Whatever classes derive from the
common RestrictedHolder base class which define validContents and canPutin(obj) as described for
RestrictedContainer above.

Page 83

TADS 3 Tour Guide

5.10. Dispenser

Later in the game the player will use a candle to start exploring the dark areas. In theory the candle could burn out
before the player succeeds in finding an alternative light source, thus rendering the game unwinnable. It would thus be
desirable for the player to have a large supply of candles available. For this we'll create a box that dispenses candles -
a Dispenser object. In fact the Dispenser doesn't handle much apart from restricting what can be put in it, so this may
not be a terribly good example, since we'll have to do most of the work in our own code.

The standard Dispensable properties we override on this object will be myltemClass and canReturnltem. We shall
shortly create a RedCandle class to be the item dispensed from this box, so we set myltemClass = RedCandle. If this
were a matchbook we could not return matches to it after we had torn them off, but there seems no reason why we
should not return candles to the box, so we set canReturnltem to true.

We don't want to create a whole Iot of red candles that will never be used - the idea is to allow the player to obtain
another one if the one he or she is using burns down before an alternative light source is found. We shall therefore
create new candles dynamically on demand; we do this in the notifyRemove method. However, to avoid creating
candles needlessly, we only create a new one if there's less than two left in the box. Again, we don't want the player to
be able to go on obtaining candles ad infinitum so we set a maximum (in our custom property maxCandlesToCreate)
and keep a count of the number created (in the custom property candlesCreated). Provided it's okay to create another
candle, we do so using the dynamic object creation syntax (new RedCandle) and move it into the box. The definition
of the candleBox then looks like this:

candleBox : Dispenser 'large green box' 'large green box' @secretPassage
desc ()

{

"The box 1is ";

if (contents.length > 10 || candlesCreated < maxCandlesToCreate/2)
"full of red candles. " ;

else if (contents.length < 1 && candlesCreated == maxCandlesToCreate)
"empty. ";

else if (candlesCreated < (3 * maxCandlesToCreate)/4)
"is about half full of red candles. ";

else
"is running out of red candles. ";

}

myItemClass = RedCandle

canReturnItem = true

initSpecialDesc = "A large green box sits by the wall.
notifyRemove (obj)

{

if (contents.length < 2 && candlesCreated < maxCandlesToCreate)

{

local cur = new RedCandle;
candlesCreated++;
cur.movelnto (self);
}
}

candlesCreated = 0

maxCandlesToCreate = 40
weight = (2 + maxCandlesToCreate - candlesCreated)
bulk = 5

dobjFor (LookIn) asDobjFor (Examine)

The other things we have done to the candleBox is to give it a fairly complex description method which gives a
suitable but vague description of its contents, and a calculation of its weight based on the number of candles there are
left to create (which must notionally still be in the box). To put an initial red candle in the box we need simply to add:

+ RedCandle;
But then we have to implement the RedCandle class:

class RedCandle : Dispensable, Candle 'red candle*candles' 'red candle'
"It's a long red candle. "

Page 84

TADS 3 Tour Guide

isEquivalent = true
isListedInContents = (!isIn (myDispenser))
myDispenser = candleBox

’

Candle is a library class that we'll come to presently. What needs to be noted here is that since all the red candles will
be identical, we set isEquivalent to true on the class definition; this tells the library that all members of the RedCandle
class are functionally identical and interchangeable. This allows you to (say) issue a command TAKE A CANDLE or
DROP A CANDLE and have the game respond appropriately even when there are several red candles in scope. It
also means that if we pick up three candles and issue an INVENTORY command, we'll be told "You are carrying three
red candles" rather than "You are carrying a red candle, ared candle and a red candle." Note that it is important to
specify the *candles plural in the vocabWords property so we can issue commands like TAKE TWO CANDLES or
DROP BOTH CANDLES.

We set the library myDispenser property to candleBox; this simply allows the parser to assume that any command
other than TAKE or TAKE FROM directed at a candle is more likely to refer to a candle that's already out of the box.
We make further use of this property in an overridden isListedinContents, which we set to nil for candles still in their
original container. This is to prevent the game announcing the exact number of candles in the box, which would be a
misleading number (not taking into account the new candles the box was capable of creating) and would clash with
the description we have provided in candleBox.desc.

5.11. StretchyContainer

A StretchyContainer is simply a Container that changes bulk according to its contents. An example might be a sack,
which would have virtually no bulk when empty, but becomes bulkier the more is put in it. We can leave one in the
squareCave, which could be used for carting things around in:

sack : StretchyContainer 'coarse brown sack' 'coarse brown sack' @squareCave
initSpecialDesc = "A coarse brown sack lies crumpled in the corner. "
bulkCapacity = 30
minBulk = 1

’

Presumably not even a StretchyContainer is infinitely elastic, so we give it a finite bulkCapacity. We can also set a
minBulk which is the bulk of the sack when empty.

Note that if we want to find out how bulky the sack has become at any point in our game code we need to test its
getBulk() method, not its bulk property (which never changes).

5.12. SpaceOverlay

You are unlikely to use a SpaceOverlay directly (except perhaps to derive your own subclass from it). The main
function of the SpaceOverlay class is to provide common functionality for its subclasses: Underside, RearContainer,
and RearSurface. It is worth considering the SpaceOverlay before its subclasses, however, in order to be aware of the
common behaviour they all inherit.

According to the comments in the library code:

A "space overlay" is a special type of container whose contents are supposed to be adjacent to the container object
(i.e., self), but are not truly contained in the usual sense. This is used to model spatial relationships such as UNDER
and BEHIND, which aren't directly supported in the normal containment model.

The special feature of a space overlay is that the contents aren't truly attached to the container object, so they don't
move with it the way that the contents of an ordinary container do. For example, suppose we have a space overlay
representing a bookcase and the space behind it, so that we can hide a painting behind the bookcase: in this case,
moving the bookcase should leave the painting where it was, because it was just sitting there in that space. In the real
world, of course, the painting was sitting on the floor all along, so moving the bookcase would have no effect on it; but
our spatial relationship model isn't quite as good as reality’'s, so we have to resort to an extra fix-up step. Specifically,
when we move a space overlay, we always check to see if its contents need to be relocated to the place where they
were really supposed to be all along.

Page 85

TADS 3 Tour Guide
SpaceOverlay defines the following properties that are inherited by its subclasses:

» abandonLocation - This is the location where objects located in a SpaceOverlay (Underside, RearContainer or
RearSurface) end up when the SpaceOverlay is moved. By default, this will be the immediate container of the
SpaceOverlay. For example, if the SpaceOverlay represents the underside or rear of a dressing table, if the
dressing table is moved, then we would expect whatever was behind it to stay put in the dressing table's original
location. You can override abandonLocation to some other location if that's where objects in the SpaceOverlay
should fetch up, or set it to nil if you want objects in the SpaceOverlay to move with the SpaceOverlay (because
they're to be considered attached to the underside or rear of the object that's moved). In addition, any object of
class Component in a SpaceOverlay will always move with the SpaceOverlay, since a Component is assumed to be
attached to its parent object.

» alwaysListOnMove - If this property is set to nil (the default), the SpaceOverlay only lists its contents the first time
it's moved (on the basis that if you moved, say, a piece of furniture, you would then see what was behind it or
underneath it). If alwaysListOnMove is set to true, on the other hand, then the contents of the SpaceOverlay are
listed every time it is moved.

Note that a SpaceOverlay will generally be implemented as a Component of a ComplexContainer: in such a case the
'it' that will actually be moved (causing SpaceOverlays such as its Underside or RearSurface) will be the
ComplexContainer (though it will of course take its SpaceOverlays with it).

5.13. Underside

An "underside" is a special type of container that describes its contents as being under the object. This is appropriate
for objects that have a space underneath, such as a bed or a table.

Usually, an Underside is not much use by itself (since it would be the Underside of something), and one would
normally use it as part of a ComplexContainer. It is, however, possible (though more laborious) to link an Underside to
another object using remapTo commands. Just to show how it could be done, we'll give the desk in the cabin an
Underside by this means, and then hide the button under it, so that the player can only find it by explicitly looking
under the desk:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk, with a single drawer. "
initSpecialDesc = "A large oak desk sits in the middle of the cabin. "
specialDescOrder = 50
dobjFor (LookUnder) remapTo (LookUnder, underDesk)
iobjFor (PutUnder) remapTo (PutUnder, DirectObject, underDesk)

+ underDesk : NameAsOther, Underside, Component
targetObj = cabinDesk

’

++ Hidden, Button, Component 'small brown button' 'small brown button'
"The small brown button is fixed to the underside of the desk. "
dobjFor (Push)
{

action ()
{
"There's a sharp <i>click</i>, and a section of the foreward bulkhead slides
<<pbulkheadDoor.isOpen ? 'closed' : 'open'>>. ";
bulkheadDoor.makeOpen (!bulkheadDoor.isOpen) ;
}
}

isListedInContents = (discovered)

Note that this anticipates the use of the Hidden class, which we'll be looking at in more detail later.

Apart from a number of message properties, the main new property of interest defined on Underside is
allowPutUnder; if this is set to true, actors (including the player character) may place objects in (i.e. under) this
Underside; otherwise they may not. allowPutUnder is true by default.

Page 86

TADS 3 Tour Guide

5.14. RearContainer

A rear container represents the space behind an object. The principal additional property it defines is
allowPutBehind; if this is true, objects may be placed in the RearContainer with a PUT BEHIND command; if it is nil,
they may not.

For the most part, a RearContainer will be most useful as the ComplexComponent of a ComplexContainer, since it is
hard to think of something that only has a rear. A RearContainer can, however, quite successfully be used for an
object like a painting or a mirror hanging on a wall, for example:

mirror : RearContainer 'large gilt-framed gilt framed mirror'
'mirror' @anotherCave
"The mirror is about three foot tall by eighteen inches wide. It is
brightly silvered, so that your reflection in it is no more flattering
than you would expect. "

initSpecialDesc = "A large gilt-framed mirror hangs on the wall opposite
the dressing table. "

bulk = 8

weight = 4

allowPutBehind = nil

’

+ smallHoleInWall : Hidden, Container, Fixture 'small hole' 'small hole'
"It's just a couple of inches square, and about as deep. "
specialDesc = "There's a small hole in the wall

opposite the dressing table. "
initSpecialDesc = "Behind the mirror is a small hole in the wall. "

bulkCapacity = 2

Once again it has been necessary to anticipate the introduction of the Hidden class, but it's virtually impossible to
illustrate the use of a RearContainer (or other SpaceOverlay) without it, so it'll just have to be taken on trust for now.
The effect is that the small hole in the wall will be revealed only when the player looks behind the mirror or takes it for
the first time. Also, when the mirror is moved, the small hole is moved from the mirror to the mirror's former location,
which paradoxically has the effect of leaving it behind in the same place. This occurs even though the small hole is a
fixture, so that after the mirror is moved, the hole ends up being a Fixture in the room, which is what we want.

Note that we have set allowPutBehind to nil to prevent anything being put behind the mirror; which would normally
make sense (since it would normally not be that easy to put sundry objects behind a mirror hanging on the wall). In
this case, however, we might feel that while the mirror is still hanging on the wall, putting something behind the mirror
is equivalent to putting it in the hole, but that it should not be possible to put anything behind the mirror once it's been
moved. We can implement this like so:

mirror : RearContainer 'large gilt-framed gilt framed mirror'
'mirror' @anotherCave
"The mirror is about three foot tall by eighteen inches wide. It is
brightly silvered, so that your reflection in it is no more flattering
than you would expect. "

initSpecialDesc = "A large gilt-framed mirror hangs on the wall opposite
the dressing table. "

bulk = 8

weight = 4

allowPutBehind = (!moved)
iobjFor (PutBehind) maybeRemapTo (!moved, PutIn, DirectObject, smallHoleInWall)

In due course, we'll hide a small piece of black wire in the small hole, but we'll wait till we get to the point when this bit
of wire is needed and we've covered the ground we need to implement it properly. In the meantime, there's one further
detail to attend to. As things are at the moment, when you take the mirror the transcript goes something like this:

>take mirror
Behind the mirror is a small hole in the wall. Taken.

In this case it's reasonably obvious that 'Taken' must refer to the mirror and not the small hole, but it's not as clear as it
might be, and in other circumstances, where what lay behind or beneath something was a portable object that easily

Page 87

TADS 3 Tour Guide
could be taken, the 'Taken' message might be downright misleading. We can make the message clearer by making
the following modfication to SpaceOverlay:

modify SpaceOverlay
okayTakeMsg = '{You/he} take{s} {the dobj/him} '

Now, to return to our ship, since the chair in the main cabin is described as being behind the desk, it may be tempting
to try this:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk, with a single drawer. "
initSpecialDesc = "A large oak desk sits in the middle of the cabin. "
specialDescOrder = 50
dobjFor (LookUnder) remapTo (LookUnder, underDesk)
iobjFor (PutUnder) remapTo (PutUnder, DirectObject, underDesk)
dobjFor (LookBehind) remapTo (LookBehind, deskRear)
iobjFor (PutBehind) remapTo (PutBehind, DirectObject, deskRear)

+ deskRear : NameAsOther, RearContainer, Component
targetObj = cabinDesk

’

cabinChair : Chair 'padded chair/cushion' 'chair' @deskRear
"It's a fine wooden chair with a round back and a padded cushion. "
initSpecialDesc = "A wooden chair sits behind the desk. "
bulk = 10
weight = 7

This appears to work well enough, in that you can look behind the desk and be told that the chair is there, or take the
chair, subsequently put it behind the desk and find that it's described as being there once more, but you'll quickly
discover that it all goes horribly wrong if you try to sit on the chair while it's behind the desk.

It takes quite a bit of work to fix this, which will involve classes and concepts we haven't met yet (particularly the
Platform class) . But to show what we need to do, here it is:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' (@greatCabin
"It's a large, solid oak desk, with a single drawer. "
initSpecialDesc = "A large oak desk sits in the middle of the cabin. "
specialDescOrder = 50
iobjFor (PutUnder) remapTo (PutUnder, DirectObject, underDesk)
dobjFor (LookBehind) remapTo (LookBehind, deskRear)
iobjFor (PutBehind) remapTo (PutBehind, DirectObject, deskRear)
dobjFor (GoBehind) remapTo (GoBehind, deskRear)

’

deskRear : RearContainer, Platform, SecretFixture
name = 'desk'
actorInPrep = 'behind'
actorIntoPrep = 'behind'
actorOutOfPrep = 'from behind'

location = greatCabin
dobjFor (GoBehind)
{
verify () { logicalRank (140, 'rear'); }
action ()
{
gActor.movelIntoForTravel (self);
defaultReport ('{You/he} go{es} behind {the dobj/him} ');
}
}
tryMovingIntoNested()
{
return tryImplicitAction (GoBehind, self);
}

Page 88

TADS 3 Tour Guide
DefineTAction (GoBehind)

’

VerbRule (GoBehind)

('go' | 'stand' | 'walk') 'behind' singleDobj
: GoBehindAction
verbPhrase = 'go/going (behind what)'

’

modify Thing
dobjFor (GoBehind)
{
verify () { illogical('{You/he} can\'t go behind {that dobj/him}. "); }
}

’

This seems a quite a lot of work to be able to put a chair behind a desk (and even then one or two the messages
displayed may be less than ideal); but if you really want a chair behind the desk, it may be worthwhile.

5.15. RearSurface

A RearSurface is simply a RearContainer for which abandonLocation is nil by default, meaning that the contents of a
RearSurface are considered to be attached to it and so move with it. As the comments in the library code explain it:

A "rear surface" is essentially the same as a "rear container,” but models the contents as being attached to the back of
the object rather than merely sitting behind it.

The only practical difference between the "container" and the "surface" is that moving a surface moves its contents
along with it, whereas moving a container abandons the contents, leaving them behind where the container used to
be.

As with RearContainer, you'd be most likely to use RearSurface as the ComplexComponent of a ComplexContainer,
but you could also use it for a flat object that has something attached to back. For example, we could have a small
photo with a mysterious piece of paper attached loosely to the back (we'll return to this piece of paper later). For now
you can put this pair of objects in any convenient location; we'll be assigning them their proper home later:

+ smallPicture : RearSurface 'small picture' 'small picture'
"It's a faded photograph of an eccentrically-dressed man with a
long scarf, in company with a smiling young woman with
long blonde hair. "
allowPutBehind = nil

’

++ rightHalfPaper : Hidden, Readable 'right half torn sheet yellow paper*sheets’
'torn sheet of yellow paper'
"It looks like the left hand half of a sheet of paper that's been torn in two. It
contains a list of names. "

’

Once again, we make this piece of paper Hidden so the player won't find it without looking behind the picture. The
piece of paper will move with the picture, but will readily detach from it when taken, thereby modelling a piece of paper
that is only loosely attached.

One final detail we can handle is that it may occur to the player to look at the rear of the picture, but to do so by typing
LOOK AT BACK OF PICTURE instead of the, perhaps less natural and less obvious, LOOK BEHIND PICTURE. This
can be handled quite readily by adding the following:

++ Decoration 'back/picture/photo/photograph' 'back of the picture'
dobjFor (Examine)
{
verify () { nonObvious; }
action() { replaceAction (LookBehind, smallPicture); }

}

Page 89

TADS 3 Tour Guide

The thing to note here is our use of the nonObvious in the verify routine; this is to prevent the back of the picture being
included by the parser as a likely target of the EXAMINE command, so that a command like X PICTURE doesn't give
the game away by responding with "Which do picture do you mean, the small picture or the back of the picture?"

5.16. ComplexContainer

As we saw with the potential trap in trying to add a Component to a LockableContainer, an item's contents are
deemed to be either in it or on it (or, by extension, under it or behind it), but only one of these at a time. So what
happens if we have something like desk that we want to put things both on and in? Well, we've already seen how one
solution might work, because we've been using it with Underside and RearContainer, namely to define a second
object, say a desk drawer, to act as the container, and remap all the commands relating to looking in, opening,
closing, and putting things into the desk to the drawer object instead:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk, with a single drawer. "
initSpecialDesc = "A large oak desk sits in the middle of the cabin. "
specialDescOrder = 50
dobjFor (Open) remapTo (Open, cabinDeskDrawer)
dobjFor (Close) remapTo(Close, cabinDeskDrawer)
dobjFor (LookIn) remapTo (LookIn, cabinDeskDrawer)
iobjFor (PutIn) remapTo (PutIn, DirectObject, cabinDeskDrawer)
dobjFor (LookUnder) remapTo (LookUnder, underDesk)
iobjFor (PutUnder) remapTo (PutUnder, DirectObject, underDesk)
dobjFor (LookBehind) remapTo (LookBehind, deskRear)
iobjFor (PutBehind) remapTo (PutBehind, DirectObject, deskRear)
dobjFor (GoBehind) remapTo (GoBehind, deskRear)

+ cabinDeskDrawer : OpenableContainer, Component 'drawer' 'drawer'
bulkCapacity = 4

++ tardisKey : Key 'small silver key' 'small silver key';

Note the use of DirectObject in the remapTo(Putin...) macro when we are remapping a command for which the desk is
the indirect object. Again, we have defined the key to be of class Key which we haven't actually introduced yet, but
since the object definition is so simple it would be pointless to make it a Thing only to have to change it later. We'll see
how this Key works when we come to discuss the LockableWithKey class.

Note also that although the cabinDeskDrawer, being in the cabinDesk's contents, is strictly speaking notionally on its
surface, this doesn't matter in practice, since as a Component it will never be listed, and since it's on the outside of the
desk and not within some kind of Container there's no danger of its being inappropriately hidden from the player.

It would be perfectly feasible to implement all objects that have contents both on them and in them in this way. There
is, however, another way, or rather a way that automates some of the labour, and that is to use a ComplexContainer.
We'll put an old dressing-table in anotherCave as an example:

dressingTable : ComplexContainer, Heavy 'battered old dressing table' 'dressing table'
@anotherCave
"It's battered and scratched, and looks just about on its last legs. In place
of drawers, it has a pair of doors attached to the front"
inRoomDesc = "A battered old dressing table leans drunkenly against a wall of the cave. "
subSurface : ComplexComponent, Surface { }
subContainer : ComplexComponent, OpenableContainer
{
bulkCapacity = 5
openStatus { if(isOpen) ". It's open"; }
}
subUnderside : ComplexComponent, Underside { bulkCapacity = 5 }
subRear : ComplexComponent, RearContainer { bulkCapacity = 5 }

’

The main thing to note here is the way the subSurface, subContainer, subUnderside and subRear properties are
defined. Each must contain the definition of a nested object of class ComplexComponent, together with an appropriate

Page 90

TADS 3 Tour Guide

Surface class (for subSurface) or Container class (for subContainer) or Underside (for subUnderside) or
RearContainer class (for subRear). The ComplexContainer will then direct the relevant commands (e.g. PUT ON, PUT
IN, OPEN, CLOSE, LOOK IN, LOOK UNDER, LOOK BEHIND) to its subSurface, subContainer, subUnderside or
subRear as appropriate. The definition of the ComplexComponent objects can be as minimal as the subSurface, or we
can introduce further customization, as with the subContainer. Here we give the table a limited bulkCapacity when it
acts as a Container, and override its openStatus() method to suppress the "It's closed. " message that would
otherwise be appended to the description of the dressing table in response to an EXAMINE command (we have to
cheat a little here, since even if openStatus prints nothing, a terminating full stop will be printed; so we omit the full
stop from the end of the desc property and put one at the start of ". It's open"; that way the description will look right
whether the table is open or closed).

Note that inRoomDesc is not a property defined in the library; it was a custom property we defined some way back as
a convenient way of adding the description of NonPortable objects to the room description. Here this simply avoids our
having to go back and change anotherRoom.desc.

The one thing that may not be immediately obvious is how to define the initial location of objects in or on a Complex
container. This is one way:

silverCoin : Thing 'small silver coin' 'small silver coin'
"On the obverse is the head of Queen Fanny the Futile; the reverse is stamped with
the words THREE FARTHINGS. "
location = dressingTable.subSurface

’

ring : Thing 'platinum ring/band/recess' 'platinum ring'
"It's a plain platinum band, with a small empty recess on one side.
location = dressingTable.subContainer

And this is the other:

+ silverCoin : Thing 'small silver coin' 'small silver coin'
"On the obverse is the head of Queen Fanny the Futile; the reverse is stamped with
the words THREE FARTHINGS. "
subLocation = &subSurface

+ ring : Thing 'platinum ring/band/recess' 'platinum ring'
"It's a plain platinum band, with a small empty recess on one side. "
subLocation = &subContainer

’

Whichever way you use, you should only use the location or subLocation property to set the initial location of an item.
To move an item into part of a ComplexContainer you should use movelnto(), e.g.
ring.movelnto(dressingTable.subRear).

ComplexContainer Traps for the Unwary

Although ComplexContainers can be very useful, they can also be the source of very strange, frustrating and hard-to-
trace bugs in your code. The reason is that after you've set your ComplexContainer up, it can be very easy to forget
that, programmatically, it is not a single object but a linked collection of objects. Thus, for example, you might later
write a routine to check the contents of all the containers held by a particular actor, and do something like:

foreach (local cur in actor.contents)
if (cur.ofKind (Container))
foreach(local obj in cur.contents)

{

/* do something with the contents */

}

The problem here is that you may, for some reason, have implemented a portable container as a ComplexContainer;
perhaps it's an openable box with a handle on the lid; to make the handle a Component which doesn't disappear when
the box is closed, you have to make the box a ComplexContainer. You find the above code is mysteriously excluding
one of the containers, which you finally realize is because it's a ComplexContainer, so you amend the code to:

foreach (local cur in actor.contents)
if (cur.ofKind (Container) || cur.ofKind(ComplexContainer))

Page 91

TADS 3 Tour Guide

foreach(local obj in cur.contents)

{

/* do something with the contents */

}

But when this gets to your box, the above code won't work as expected, since the 'contents' of the ComplexContainer
will be its subContainers and its Component handle, not the things inside the box, as you automatically expected. The
objects actually held inside the box are actually to be fouind in its subContainer.contents property, not its contents
property. What you actually need in the above example is something like:

foreach (local cur in actor.contents)
{
local cont = [];
if (cur.ofKind (Container))

cont = contents;
if (cur.ofKind (ComplexContainer) && (cur.subContainer != nil))
cont = cur.subContainer.contents;

foreach(local obj in cont)

{

/* do something with the contents */

}

Prior to TADS 3.0.8 there was also a potential trap with opening, closing, locking and unlocking ComplexContainers,
particularly a ComplexContainer that you came to think of as being primarily a container. You might, for example, test
for cupboard.isOpen when you needed to test for cupboard.subContainer.isOpen, or call
cupboard.makelLocked(true) when you actually meant cupboard.subContainer.makeLocked (true).

Fortunately TADS 3.0.8 introduced some changes that greatly alleviates this. Suppose you have a cupboard mounted
on the wall, which you can put things in, on or under. The cupboard will have a subSurface, a subContainer and a
subUnderside. If you open, close, lock or unlock the cupboard, you are actually opening, closing, locking or unlocking
its subContainer. As of version 3.0.8 TADS has ComplexContainer recognize this by having its isOpen, isLocked,
makeOpen and makeLocked properties and methods refer to the corresponding properties and methods of its
subContainer, provided it has one. So, for example, if you test for cupboard.isoOpen you will now get the value of
cupboard.subContainer.isOpen. Likewise, if you write a statement like cupboard.makeLocked (true) it will now
automatically call cupboard.subContainer.makeLocked (true). Of course you can, if you wish, continue to test
explicitly for cupboard. subContainer.isOpen and explicitly code cupboard.subContainer.makeLocked (true); the
point is not so much that these forms are more long-winded, but that it can be very easy to forget to do this, especially
if you come to think of the cupboard as being primarily a form of lockable and openable container (which just happens
to allow things to be put on top of it and underneath it as well).

5.17. ContainerDoor

The purpose of a ContainerDoor is to represent the door of a Container, when the player might want to refer to it
separately. A container's door cannot be straightforwardly made a component of its container (located in the
container), since this would have the effect of putting the door inside the container, where it would vanish out of sight
when the container was closed. You would therefore normally use a ContainerDoor as a component of (located in) a
ComplexContainer; it then maps OPEN, CLOSE, LOCK, UNLOCK, LOOK IN and LOOK BEHIND commands to the
subContainer of that ComplexContainer.

For example, the dressing table we've just defined mentions in its description that it has a pair of doors. To implement
those doors we just need to define the following, immediately after the definition of the dressing table
ComplexContainer object:

+ ContainerDoor ' (dressing) (table) door/pair/doors' 'dressing table door'
"They're made of the same scratched, stained wood as the dressing table
to which they're attached, and perfectly match its generally battered
appearance. "
isPlural = true

’

It's also possible to set up a ContainerDoor to act as the door to any kind of openable container, by setting its
subContainer property to point to that container. For example, we could add a door to the locker in the crew quarters
by this means:

Page 92

TADS 3 Tour Guide

locker : LockableContainer, Fixture ' (crew) locker' 'locker' QcrewQuarters
"The locker is fixed firmly to the bulkhead. Its door is fastened by a simple
latch mechanism, though the latch looks a bit rusty. "
bulkCapacity = 15
disambigName = 'crew locker'
initiallyLocked = true
makeLocked (stat)

{
if (!lockerLatch.oiled)

{
reportFailure ('The latch is stuck fast. ');
exit;

}

inherited(stat);

NameAsOther, SecretFixture targetObj = locker location = crewQuarters;

+ ContainerDoor ' (locker) door' 'locker door'
"The locker door is a plain wooden front, fastened by a latch. "
subContainer = locker

’

++ lockerLatch : Component ' (locker) latch' 'latch'
"The latch looks a bit rusty. It's currently in the <<locker.isLocked
? nil : 'un' >>locked position. "

Of course, it would probably have been easier to make the locker a ComplexContainer and attach the ContainerDoor
to that; but at least this shows that other arrangements are possible.

5.18. SingleContainer

A SingleContainer is a special type of container that can hold only one object at a time. If a new object is inserted, the
old one is removed.

The example we'll create may seem a little contrived at first, but hopefully it'll make more sense when it ends up in its
proper context. For now we'll simply put it in mainCave, where it'll be convenient to test it out until its proper starting
place (a space station we'll be visiting in a Tardis) has been constructed. From the description of this object it's fairly
clear we'll need to add a number of components to it in due course. Since we don't want these to end up inside in the
Container we make our autoRectifier a ComplexContainer and the SingleContainer its subContainer object:

autoRectifier : ComplexContainer 'silver cylinder' 'silver cylinder' @mainCave
"It's about a foot high and five inches in diameter. A black ring surrounds
the opening at one end. The only other feature of interest are a conspicuous
orange button and the manufacturer's name inscribed just below the ring. "
subContainer : ComplexComponent, SingleContainer { DbulkCapacity = 3 }
bulk = 4
weight = 3

To try this out, compile the game, pick up the first aid kit on the way down to the main cave, then try putting the
contents of the first aid kit in the cylinder one at time.

This gadget is clearly incomplete, but we'll add its components and make it functional when we come to deal with the
bent key below.

Page 93

TADS 3 Tour Guide

5.19. BagOfHolding

BagOfHolding is a mix-in class that can be used for an object to which an actor (usually the player character)
automatically moves objects when his or her hands become full, provided the BagOfHolding object is in the player's
inventory. This provides a measure of realism (there's a limit to how many objects an actor could really hold in his or
her hand) without making inventory management too burdensome to the player.

All that's necessary to make an object a BagOfHolding is to add BagOfHolding to the start of its class list; a good
candidate for a BagOfHolding in the Quest of the Golden Banana might be the sack we defined earlier:

sack : BagOfHolding, StretchyContainer 'coarse brown sack' 'coarse brown sack' @squareCave
initSpecialDesc = "A coarse brown sack lies crumpled in the corner. "
bulkCapacity = 3000
minBulk = 1

affinityFor (obj)
{
return obj.ofKind(Tablet) ? 200 : inherited(obj);

}

’

If it's to be much use as a BagOfHolding the sack will need a bulkCapacity much larger than the one we initially gave
it, so here we increase its bulkCapacity to 3000.

Although there's no particular reason for doing it in this case, we define the sack's arfinityFor () method just to
illustrate its use. This should return a number between 0 (meaning that the BagOfHolding will refuse to hold the
object) to 200 (meaning that the bag is particular keen to hold the object), with 100 being the default. In this case we'll
make the sack particularly suitable for carrying the various tablets in (there's no really logical reason for this beyond
player convenience - the tablets are relatively bulky objects that the player needs to collect a number of but not to use
very often).

Note that we won't see the BagOfHolding doing much unless we also reduce the bulk capacity of the player character.
You could try reducing it to 100; add the following to the definition of the me object:

bulkCapacity = 100

Page 94

TADS 3 Tour Guide

6. Locks & Keys

6.1. Locks & Keys - Introduction

We have already met the LockableContainer class. We shall now go on to look at other types of Lockable objects,
including those that use keys. The relevant classes are:

Lockable
IndirectLockable
LockableContainer
LockableWithKey
KeyedContainer

Key
KeyRing

6.2. Lockable

Lockable is a mix-in class that must be used with other classes such as Door or Openable, but even when mixed-in
the Lockable class doesn't really do much, as we saw in the case of the LockableContainer, since it simply allows
something to be locked and unlocked via LOCK and UNLOCK commands, which are carried out implicitly if the player
tries to open whatever it is that's locked.

You can verify this by modifying both sides of the door into and out of the lakeRoom:

+ lakeDoor : Lockable, Door 'door' 'door';

+ lakeDoor2 : Lockable, Door ->lakeDoor 'door' 'door';

If you compile and run the game and try to go south through this door from anotherCave you'll find the lock doesn't
prove much of a barrier. The only reason to use plain vanilla Lockable with a Door is if the other side of the door is
going to be locked by some less plain vanilla means, which is what we'll go on to do. This could represent a situation
like a front door, say, which is locked and unlocked by a key on the outside and a simple knob on the inside. Locking
the door on the inside would then prevent pursuit by an Actor who did not have the key.

There are a number of properties and methods on the Lockable class, the most useful of which for game authors are:

» autoUnlockOnOpen: if true the object is automatically unlocked when someone attempts to open it (or at least, the
parser attempts to unlock it, although the attempt may fail if there's some reason why the object can't be unlocked).
The library default is to set this to lockStatusObvious (see below).

» lockedDesc: the description to display when the object is locked or unlocked. The library default is fine for most
situations, but if you want to customize it you need to define the property in the form lockedDesc = (isLocked() ?
messageWhenLocked : messageWhenUnlocked), where messageWhenLocked and messageWhenUnlocked are
single quoted strings or properties/methods evaluating to single quoted strings.

» lockStatusObvious: this should be true or nil depending on whether an actor should be able to tell by simple visual
inspection that the object is locked. The library default is true. For a LockableWithKey (e.g. a door with a keyhole) it
might not be obvious whether the object is locked until the player tries to open it. In such a case the most desirable
behaviour might be for the game to change lockStatusObvious from nil to true once the door has been tried; for
example you could override cannotUnlockMsg on the object to include something like '<.reveal door-locked>' and
then set lockStatusObvious = gRevealed('door-locked').

» lockStatusReportable: this is used to decide whether the parser should report the object as being locked or
unlocked. For example, if an object is open, it is obviously unlocked, so it is redundant to report something like "The
door is red. It's open. It's unlocked. ", it is sufficient to report "The door is red. It's open. " The library takes care of
this particular case by default, but there may be other cases where you want to override the library behaviour.

Page 95

TADS 3 Tour Guide

 isLocked(): note this is a method, not a property; test this value to determine whether the object is locked, but do
not overwrite it to lock or unlock an object programmatically. Call makeLocked() instead.

» makeLocked(stat): Call makeLocked(true) or makeLocked(nil) to lock or unlock the object programmatically (e.g.
as the result of pushing a button or pulling a lever on an IndirectLockable). You can also override this method if you
want to produce some additional side-effects of locking or unlocking the object, but make sure you then call
inherited(stat) somewhere in your makeLocked(stat) method.

« initiallyLocked: if this is true (as it is by default) then the Lockable object starts out locked, so if we don't want it to
start out locked we need to change this to nil (note that this was first added to Lockable in TADS 3.0.10)

IMPORTANT NOTE. Since Lockable is a mix-in class (not derived from Thing) (1) it cannot be used on its own (you
can't define a physical object as being simply Lockable, it must be a Lockable something, such as a Lockable,
Container or a Lockable, Door) and (2) it must be listed before any Thing-derived class it is mixed-in with. Thus
whereas the following works fine:

+ lakeDoor : Lockable, Door 'door' 'door';
The following does not:
+ lakeDoor : Door, Lockable 'door' 'door';

The second of these will compile fine, and the door will appear - but the lock won't work as expected (for example,
even if the initiallyLocked property is set to true, the door won't start out locked).

6.3. IndirectLockable

IndirectLockable is another mix-in class for use with objects such as doors that cannot be unlocked with a simple
UNLOCK command, but do not use a key; that is something that must be unlocked by some other mechanism such as
a lever or switch. To make things more interesting we'll change the door into the lakeRoom into an indirectLockable,
which is unlocked by inserting the brass coin into a slot:

+ lakeDoor : IndirectLockable, Door 'smart new door' 'smart new door'
"The door is completely plain apart from a small vertical slot. "
cannotUnlockMsg = 'The door does not appear to have a conventional lock. '
++ RestrictedContainer, Component 'small vertical slot' 'slot'

"It's about half an inch long; next to it is some faded writing that
just about still says\nENTRANCE TO LAKE\nONE GROAT. "
validContents = [silverCoin, brassCoin]
notifyInsert (obj, newCont)
{
if (obj==brassCoin)
{
"As the brass coin disappears into the slot you hear a click from the door. ";
obj.movelnto(nil);
lakeDoor.makeLocked (nil) ;

}

else
{
"Despite initial appearances <<obj.theName>> doesn't seem to be quite
right for the slot. ";
}
exit;
}

’

We make use of a RestrictedContainer to accept the coin, but since we have left a silver coin in plain sight next to the
door the player is almost bound to try it, so we include it in the list of validContents so that we can display a custom
message for it. We handle the insertion of either coin in the notifylnsert method. If the coin is the brass one, we display
a suitable message, move the coin into nil (since it presumably disappears into some repository) and unlock the
lakeDoor by calling is makeLocked method: makeLocked(nil) unlocks the door, whereas makelLocked(true) would
lock it again (which is not something we want to do here). Whichever coin was inserted we end notifylnsert with an exit
statement since we do not in fact want the rest of the default command handling, which would move the coin into the
slot.

Page 96

TADS 3 Tour Guide

Note also the use of the cannotUnlockMsg property to provide a customized response to attempts to unlock the door
other than by inserting the coin.

The initiallyLocked propery of an IndirectLockable controls whether it starts life locked (if this property is true) or
unlocked (if its nil). By default, initiallyLocked is true.

Like Lockable, IndirectLockable is a mix-in class that must precede any Thing-derived class it is mixed in with, as in:
+ lakeDoor : IndirectLockable, Door 'smart new door' 'smart new door'
"The door is completely plain apart from a small vertical slot. "

cannotUnlockMsg = 'The door does not appear to have a conventional lock. '

The following would have been wrong (since the door would not have started out locked):
+ lakeDoor : Door, IndirectLockable 'smart new door' 'smart new door'

"The door is completely plain apart from a small vertical slot. "
cannotUnlockMsg = 'The door does not appear to have a conventional lock. '

6.4. KeyedContainer

A KeyedContainer is a Container that can be opened and closed, and also locked and unlocked with a key. As an
example we'll put a large, heavy trunk in mainCave:

trunk : KeyedContainer, Heavy 'large black trunk' 'large black trunk' @mainCave

initSpecialDesc = "A large black trunk rests in the middle of the cave. "
initiallyLocked = true
keyList = [brassKey]

’

Note that we have to set initiallyLocked to true if we want the trunk to start locked, and that keyList needs to be set
to the list of keys that can lock and unlock this container. Clearly, we also need to define the key, which is entirely
straightforward:

brassKey : Key 'small brass key' 'brass key' @roundCave;

Note that even if it is listed in another objects' keyList, to function as a key an object must be of class Key and not
simply Thing; the Key class contains a number of specializations, of which the most important is overriding
verifylobjLockWith() and verifylobjUnlockWith() to make it logical (which implies possible) for a Key to be used as the
indirect object of these commands.

The trunk will obviously be more interesting if there's something inside when it's opened, so let's put the glass jar and
the fake golden banana inside:

fakeTreasure : Thing 'huge great golden gold banana/treasure’
'golden banana' @trunk

glassJar : BasicContainer 'glass jar' 'glass jar' Qtrunk
You'll also need to delete fakeTreasure's initSpecialDesc, which is no longer appropriate.

Finding a key and opening a container with it is a pretty standard (one might almost say hackneyed) puzzle, so to
make things more interesting we could have the brass key start out a bit bent, so that the player has to work out some
way to straighten it before it'll work. In that case we want to give the player a fairly strong hint that it's nonetheless the
right key. We can achieve all this by giving the brassKey a custom isBent property and checking for it in trunk's
lockOrUnlockAction method (the action method of a LockWith command simply calls lockOrUnlockAction(true) while
that of an UnlockWith command simply calls lockOrUnlockAction(nil)).

Page 97

TADS 3 Tour Guide

trunk : KeyedContainer, Heavy 'large black trunk' 'large black trunk' @mainCave

initSpecialDesc = "A large black trunk rests in the middle of the cave. "
initiallyLocked = true
keyList = [brassKey]

lockOrUnlockAction (lock)
{
if (gIobj.isBent)
reportFailure (' {The iobj/he} fits the lock but won\'t quite turn in it. ');
else
inherited(lock) ;

’

brassKey : Key 'small brass key' 'brass key' @roundCave
"It<<isBent ? ' looks slightly bent' : '\'s been straightened'>>. "
isBent = true

We now need to find a way to straighten the brass key so that it'll open the trunk. Among things players might try is
hitting the key with various objects, or trying to put in the flame of the torch, and we should probably provide suitable
responses to such attempts or even make some of them work. But for now, we'll adopt a more exotic solution, a
futuristic Autorectifier (a device that straightens any bent device placed in it), which will eventually be discovered
aboard a space station (once we've constructed the space station and a means of getting there). We've already
defined the basic cylinder that's the core of the device, here's the complete definition along with its components:

autoRectifier : ComplexContainer 'silver cylinder' 'silver cylinder' @mainCave
"It's about a foot high and five inches in diameter. A black ring surrounds
the opening at one end. The only other feature of interest are a conspicuous
orange button and the manufacturer's name inscribed just below the ring. "
subContainer : ComplexComponent, SingleContainer { bulkCapacity = 3 }
bulk = 4
weight = 3

+ Component 'black ring' 'black ring'
"The black ring appears to made of some kind of rubbery plastic, but the material
is unfamiliar to you, as is its function. "

+ Component 'manufacturer\'s name' 'manufacturer\'s name'
"According to the inscription this device was manufactured
by ALDEBARAN AUTORECTIFIERS INTERPLANETARY CORP."

+ Button, Component 'orange button' 'orange button'
"It's a large round button on one side of the cylinder. "
dobjFor (Push)
{
action()
{
"When you push the button the cylinder starts to hum, and its interior glows
with a light that starts orange, then changes to yellow, then finally
a dazzling white, as the hum steadily rises in pitch. Suddenly the hum
stops and the light inside goes out. ";
foreach (local cur in autoRectifier.subContainer.contents)
if (cur.isBent) cur.isBent = nil;

Note how we specify the contents of the cylinder in the button's actionDobjPush method, and that this method will set
isBent to nil on anything placed in the cylinder (if it is not nil already); this will allow the device to be usable on any
other bent objects we care to introduce into the game.

Page 98

TADS 3 Tour Guide

6.5. LockableWithKey

You may recall a little way back that we defined a tardisKey to be found inside the desk in the cabin. Where there's a
key to a Tardis, there should be a Tardis somewhere, so we'll set about defining one and giving it a lockable door.

tardis : Enterable -> tardisDoor 'dark blue police box/tardis' 'Tardis' @hold
"It's a small dark blue booth, with a blue light on the top and
the words POLICE BOX above the door. "
initSpecialDesc = "A dark blue police box stands in the corner.
specialDesc = "A Tardis, conspicuously disguised as a police box, stands here.

"

"
’

+ tardisDoor : LockableWithKey, Door '(tardis) door' 'door'
disambigName = 'Tardis door'
keyList = [tardisKey]

For those not familiar with the BBC TV series "Dr Who", a Tardis is a type of time machine (the name is meant to be
an acronyn of Time And Relative Dimensions In Space). The main ability of a Tardis is to dematerialize at one point in
time and space and rematerialize in another location in time and space. A Tardis is also larger inside than out. Finally,
a Tardis is meant to blend in with its surroundings on rematerialization, but Dr Who's Tardis became stuck in its 1960s
London appearance, and so always looks like a Police Box (a kind of dark blue phone booth) from the outside.

At this point we need to define the interior of the Tardis, so that there's somewhere to go to if the player attempts to
enter it or go through its door. As is well known, a Tardis is bigger inside than out, so we could give it as many rooms
as we liked. We'll stick to just two, but then there's the question of how to describe their relative positions. Compass
directions won't mean much inside the Tardis, and it's not obvious that shipboard directions like port and starbooard
would mean much either. On the other hand, from the outside one would probably regard the side of the Tardis with
the door as its front, so there would be some justification for regarding movement towards this door as "fore" and
away from it as "aft", which means that shipboard directions might just about do. We don't want the customizations of
the Cabin class aboard the Tardis though, so we'll simply use the ShipboardRoom class:

tardisControlRoom : ShipboardRoom 'Tardis control room' 'the Tardis control room'
"The room is, of course, much larger than the Tardis looks from the outside.
Its walls are white, with curious circular indentations.
A white door leads out to the outside world (wherever or whatever that may be)
and an inner door leads further into the vessel.
At the centre of the control room stands a hexagonal control console.

"

fore = tardisDoorInside
out asExit (fore)
aft = tardisInnerDoor

in asExit (aft)

’

+ tardisDoorInside : Lockable, Door ->tardisDoor 'outer white door*doors' 'white door';
+ tardisInnerDoor : Door 'inner door*doors' 'inner door';
tardisLivingQuarters : ShipboardRoom 'Tardis Living Quarters' 'the living quarters'
"There's not much here at the moment, but a door leads out. "
out = tardisLivingQuartersDoor

fore asExit (out)

+ tardisLivingQuartersDoor : Door -> tardisInnerDoor 'door' 'door';

The beauty of the way tardisDoorlnside points to tardisDoor is that whenever we move the Tardis to a new location,
the player character will automatically emerge in that location on leaving the Tardis.

Once again, LockableWithKey is a mix-in class, so it should become before any Thing-derived class in an object or
class definition.

Page 99

TADS 3 Tour Guide

6.6. Keyring

A KeyRing is a specialized BagOfHolding designed for use with keys. In practice this means that if a player character
is carrying a KeyRing, every time he or she picks up a key it's automatically added to the KeyRing, and when he or
she comes across a previous unencountered locked door, an attempt to unlock it will automatically cause every key
on the KeyRing to be tried (until one fits).

Since this is a convenient object for the player to have, we'll let the player find one early on. The definition can be
minimal:

Keyring 'silver (key) keyring/ring' 'silver keyring' @firstAidKit

’

To see how it works, you might like to try going through the game so far, picking up the silver keyring at an early
stage, and seeing what happens when you pick up the two keys and try opening the locked door into the Tardis and
the locked trunk without specifying which key to use.

There are not many methods or properties of Keyrings you'd generally want to override, but you might have cause to
override isMyKey(key). This method determines whether key is an acceptable object to be placed on the Keyring,
and by default accepts anything of class Key. It may be, however, that you're developing a game with several types of
key, for example the conventional metal rods with teeth that turn in cylindrical locks and flat magnetic cards that are
pushed into slots, and you may feel that the same type of Keyring would hardly be suitable for both. If you defined a
CardKey subclass for the second type of key you might want to define Keyrings for the two types of key thus:

conventionalKeyring: Keyring 'brass keyring' 'brass keyring'
isMyKey (key)
{
return key.ofKind (Key) && !key.ofKind(CardKey) ;

}

’

cardHolder: Keyring 'plastic cardholder' 'plastic cardholder'
isMyKey (key) { return key.ofKind(CardKey); }

’

We'll be doing something like this presently, when we come to implement a card key.

6.7. Openable

Most objects that are lockable are also likely to be openable - after all, there's not a lot of point in locking or unlocking
an object that can't be open or closed. However, since most of the objects that are openable and closable tend to be
container-like objects or door-like objects, in practice one tends to use classes like Door and OpenableContainer
rather more than a bare Openable. We are not yet ready to introduce an example of a bare Openable in our test
game, but there is one later, the tardisPanel object.

The Openable class inherits all the behaviour of BasicOpenable and the mainly adds handling (or at least additional
preconditions) for a number of common verbs (OPEN, CLOSE, PUT IN, POUR INTO, LOCK, LOCK WITH, GET OUT
OF, and BOARD).

Openable also defines lockStatusReportable to be (lisOpen); for a fuller explanation see Lockable. Finally it defines
an opensStatus() method which returns a sentence like "it's open" or "it's closed" (without punctuation) which can be
added to the description of an object to indicate whether it's open or closed. The library defaults are usually fine, but
you may, for example, want to suppress "it's closed" either for aesthetic reasons or to disguise the fact that something
is openable, in which case you might write something like:

openStatus { return isOpen ? inherited : ''; }

If you do that, however, the punctuation will look a bit wayward when the object is closed, so you also have to tweak
the description of the object from something like:

"It's red and square. "

Page 100

TADS 3 Tour Guide

To

"It's red and square"

And then write your openStatus method thus:
openStatus = (isOpen ? '. It\'s open' : ''")

Note that the final full stop (or period) and space have been removed from the end of the object description and added
instead to the start of the "It's open" message.

6.8. BasicOpenable

BasicOpenable is the base class for openable items. It defines the basic behaviour for objects that can be opened and
closed, but no special handling for commands (such as OPEN and CLOSE) that might commonly be used for
openable objects. It is much more likely that you will use subclasses of BasicOpenable (such as Openable, BasicDoor
and their sublasses) than BasicOpenable in game code. It is conceivable that you might want to subclass a custom
kind of openable object from BasicOpenable, as it is conceivable that you might want to implement a BasicOpenable
object in a game for an object that can be open and closed but not does respond to normal opening and closing
commands (e.g. because it can only be opened and closed by pushing a button or pulling a lever), but these are left
as exercises for the interested reader. The chief importance of BasicOpenable is that if defines the behaviour common
to all its descendants. The important properties and methods to know about are:

« initiallyOpen: set this to true if you want the object to start out open. The default is nil.

» isOpen(): use this method to determine whether the object is open (true) or closed (nil), but do not overwrite this
property in game code to make an object open or closed; call makeOpen instead.

* makeOpen(stat): call this method to open or close the object programmatically, by calling makeOpen(true) or
makeOpen(nil). You can also override this method to bring about additional side-effects of opening or closing the
object, but if you do so be sure to remember to call inherited(stat) somewhere in your overridden makeOpen(stat).

» openDesc(): the method/property that provides an additional description to say whether the object is open or

closed; the English library defaults are "open" and "closed", which are good enough for most purposes.

Page 101

TADS 3 Tour Guide

7. Light and Fire

7. Light and Fire - Introduction

So far we have to rely on the MEGA or FIAT LUX cheating (I mean debugging, of course) command in order to
explore dark locations. The time has come to do the job properly by providing the player with light sources. These can
be as simple as an object that permanently glows, or as relatively complex as candles, torches/flashlights or oil lamps,
together with matches to light them.

7.2. brightness

The simplest way to provide portable light is to create a portable object and set its brightness property to a suitable
level, e.g.:

Thing 'brass lantern' 'brass lantern' (@mainCave
"It's an ordinary brass lantern, except you can't turn it off.
brightness = 3

"
’

We shan't be making this lantern a permanent feature of the game, but if you want to experiment, by all means try it.
You'll find that when the player character is carrying the lantern you can move around all the previously darkened
areas easily, since the lantern now provides light. For some games in some situations this may be all you need. The
other classes of light-providing objects we'll be looking at simply provide more sophisticated ways of adjusting the
brightness property of (usually) portable objects.

7.3. LightSource

LightSource is the most basic class that provides some specialization for providing light. It provides a makeLit(lit)
method for turning the light on and off, or, to be strictly accurate, for adjusting the brightness between the the values of
its brightnessOn and brightnessOff properties (by default 3 and 0 respectively). Again, by default, a LightSource
starts out lit (i.e. with its isLit property set to true). It also describes itself as providing light when lit. It may sometimes
be useful to use this class for lightsources other than the Flashlight and Candle types provided by the library. As an
illustration, we can convert the brass lantern of the previous section into a curious device that is lit only when the
player character is holding it.

LightSource 'brass lantern' 'brass lantern' @mainCave
"It's an ordinary brass lantern, except it has no visible means of control.
isLit = nil
movelInto (newCont)
{
makelLit (newCont == gPlayerChar);
inherited (newCont) ;

}

"

’

Once you've finished playing (experimenting seriously, | mean) with this lantern you can delete it; it's an impractical
device and we shall have no further use for it in this game. In the meantime you may have noticed that an even
simpler way to have defined it would have been:

LightSource 'brass lantern' 'brass lantern' @mainCave
"It's an ordinary brass lantern, except it has no visible means of control.
isLit = (isHeldBy(gPlayerChar))

"
’

But | wanted to illustrate the use of the makeLit() method. The second way of defining it does, however, provide a
useful illustration of the isHeldBy(actor) method, a method of Thing that returns true if the Thing is directly in the
actor's inventory, but is not being worn by the actor (more or less).

Page 102

TADS 3 Tour Guide

7.4. Flashlight

A Flashlight is basically a LightSource with a switch that can be used to turn it on and off (just like a flashlight or, as
we'd call it in Britain, a torch).

blackTorch : Flashlight 'large black flashlight/torch' 'large black torch' @mainCave
"It looks a serious heavy-duty instrument, with a firm ridged grip and
a powerful bulb. "
brightnessOn = 4
bulk = 2
weight = 2

There's no particular reason for setting brightnessOn to 4 here, other than the fact that it's described as a powerful
torch and to demonstrate that it can be done. You can try this torch/flashlight out if you like, but we won't be leaving it
lying around in mainCave for the player to pick up so easily. Instead we'll put in a storage cabinet aboard the Tardis:

tardisLivingQuarters : ShipboardRoom 'Tardis Living Quarters' 'the living quarters'
"These living quarters are pretty bare right now, but there is a storage cabinet
fixed to one wall, and a door that leads out. "
out = tardisLivingQuartersDoor
fore asExit (out)

’

OpenableContainer, Fixture 'storage cabinet' 'storage cabinet' @tardisLivingQuarters
"The large cabinet is painted a cream colour and looks securely fixed to the wall.

’

+ blackTorch : Flashlight 'large black flashlight/torch' 'large black torch'
"It looks a serious heavy-duty instrument, with a firm ridged grip and
a powerful bulb. "
brightnessOn = 4
bulk = 2
weight = 2

This, of course, leaves players with the problem of finding an alternative light source before they can reach the Tardis.
We'll deal with that next.

7.5. Candle & FireSource

Candle is the other specialization of LightSource provided in the library (strictly speaking, it inherits from
FueledLightSource, which in turn inherits from LightSource). It can, of course, be used to implement candles (as we'll
do in just a minute), but it is useful for implementing any light source with a limited fuel supply or burn life (as we shall
go on to explore).

We have already defined some candles in our game (back when we implemented a Dispenser). You may recall we in
fact defined our own RedCandle class. As yet, however, we have provided no means of lighting them. What we need
for the task is a FireSource. One is available in the shape of the flaming torch attached to the wall, but we need to
make some changes to it so it will act as a FireSource.

FireSource, Fixture 'flaming torch torch/flame/flames' 'torch' @mainCave
"The torch, which is fixed firmly to wall by a steel bracket, is blazing merrily,
its flames casting a bright but flickering light over the cave. "
cannotTakeMsg = 'It\'s fixed to the wall. '
preCondIobjBurnWith = static inherited - objHeld
isLit = true
disambigName = 'flaming torch'

There's a few things to note here. Firstly, the default handling for a FireSource requires that the actor is holding it
before it can be used to light anything else; this is not appropriate, or not even possible, for a flaming torch fixed to the
wall, so we need to removed the objHeld precondition. This is what we do with preCondIobjBurniWith = static
inherited - objHeld, which, so far as the compiler is concerned, is precisely the same as if we had written:

Page 103

TADS 3 Tour Guide

iobjFor (BurnWith)
{
preCond = static inherited - objHeld

}

Which might have been clearer, but is also a bit more long-winded. This shorter syntax is worth considering when
overriding only a single method of a dobjFor or iobjFor set, but probably not worth the loss of clarity if overriding two or
more such methods. (To construct the appropriate method or property name, begin with 'verify', ‘check’, 'action' or
'preCond’, then add either 'Dobj' or 'lobj' and conclude with the action specifier, e.g. 'Take', 'Drop', or, as here,
'‘BurnWith").

We need to set isLit = true, otherwise the FireSource will be regarded as unlit and thus not capable of lighting anything
else (until lit itself). Finally, we add a disambigName in case there's ever a name clash with the torch (flashlight) we
defined in the last section.

A further customization that might be worth making is to the vocabulary for the BurnWith command. That defined in
the library allows you to BURN, LIGHT, IGNITE or SET FIRE something WITH something. In the case of the candle
and the torch, however, it would be perfectly natural for the player to type, for example, LIGHT CANDLE FROM
TORCH. To allow this, we can simply override the vocabulary defined in the library, leaving everything else as it is:

modify VerbRule (BurnWith)
('light' | 'burn' | 'ignite' | 'set' 'fire' 'to') singleDobj
('"with' | '"from') singleIobj

’

Although we have already defined a RedCandle class, we need to tweak it a bit. Firstly, once a candle is lit, there's no
reason why it shouldn't be used to light other candles (or anything else that's ignitable), so we should add FireSource
to its class list. Secondly, a candle is not a very efficient light source (we shall assume), so we'll reduce its
brightnessOn to 2 (this may not make much practical difference here, but one could devise situations in which it could
be made to). Thirdly, a Candle continues to burn until its fuelLevel reaches zero, its fuelLevel being decremented by 1
each turn. By default a Candle starts with a fuelLevel of 20, but we'll be less generous with our Candles, making them
a temporary expedient until the player finds a more efficient light source. Finally, once a candle has burned down,
there's nothing left but a stub, and this should be reflected in its description. It's this last requirement that will add most
of the complication.

class RedCandle : FireSource, Dispensable, Candle 'red candle*candles' 'red candle'
desc ()
{
switch (fuellevel)
{

case O:

"It's just the stub of a red candle. "; break;
case 1:

"There's not much of it left. "; break;
case 2:

"It's little more than a stub. "; break;
case 3:

"It's a short red candle. "; break;
case 4:

"It's reasonably long. "; break;
default:

"It's a long red candle. ";
}
if (isLit)
{

"It's alight";

if (fuellevel < 3)

", but its flame is starting to flicker";
}
}

isEquivalent = true
isListedInContents = (!isIn (myDispenser))
myDispenser = candleBox

fuellevel = 7
brightnessOn = 2
sayBurnedOut ()

Page 104

TADS 3 Tour Guide
{
inherited;
local cur = new RedCandleStub;
cur.movelnto (location) ;
moveInto(nil) ;

}

dobjFor (BurnWith)

{
check ()

{
if (fuellevel < 1)
sayBurnedOut;
else
inherited;

’

class RedCandleStub: Thing 'red candle stub*stubs*candles' 'red candle stub'
"It's just the stub of a red candle. "
isEquivalent = true
weight = 0
bulk = 0

’

The desc() method provides a suitable description of the candle at various fuel levels, adding a suitable second
sentence if it's lit. When the candle runs out of fuel its sayBurnedOut() method is called, which makes this a good
place to add any other special handling for this eventuality. What we want here is for the original candle to be replaced
by a worthless candlestub object, so we create a new RedCandleStub, move it into the location of the candle that's
just burned down to nothing, then move the burned-out candle to nil to dispose of it. We can't just tinker with the name
and vocabWords properties of the burned out candle object, since the isEquivalent property being set to true means
that all members of the RedCandle class must be effectively identical. The checkDobjBurnWith() handles the case
when the player douses the candle just before it goes out and then tries to light it again; the standard library behaviour
would prevent the candle being lit, and so it would never be replaced with a stub.

Prior to version 3.0.9 this code a strange bug would occur if you pick up the box, take a candle and then try to light it.
For some reason that is not entirely clear to me, this resulted in the objBurning precondition attempting to take and
light a series of candles in turn from the box until a stack overflow occurred. TADS 3.0.9 corrects this bug, but the way
to prevent it in earlier versions is to remove the objBurning precondition (which tries to light a fire source if it's not
already lit) and instead simply to make it illogical to try to light something with an unlit fire source.

iobjFor (BurnWith)
{
preCond = [objHeld]
verify ()
{
inherited;
if('isLit)
illogicalNow (' {The iobj/he} is not 1lit. ');
}
}

But if you're using TADS 3.0.9 or above this should not be necessary.

7.6. OilLamp

Actually, there's no OilLamp class in the TADS 3 library, but that doesn't stop us creating an oil lamp of our own.
We've deliberately made the candles rather annoying to use, so the player will need a steadier light source, even
before s/he encounters the flashlight in the Tardis.

In fact, an oil lamp is virtually the same as a candle, in that when lit it gives off light, and continues to burn until
extinguished by the player or until it runs out of fuel. We can therefore base our oil lamp on the Candle class. The
main complication comes from the fact that, unlike a candle, an oil lamp can be refuelled, so we need to add handling

Page 105

TADS 3 Tour Guide

for oil being poured into the lamp. We also need to provide a description that depends on the state of the lamp, and to
have the lamp warn the player when it's about to go out. The last can convieniently be achieved in the burnDaemon
method, which is called once every turn that the lamp is lit.

oilLamp : FireSource, Candle 'brass (oil) lamp' 'brass oil lamp' @sack
desc ()
{
"It's a fine, polished brass oil lamp, in good working order. ";
if(isLit)
{
"It's currently 1it";
if (fuellevel<4)
", but the flame is starting to burn low";
}
}
fuellevel = 20
fuelCapacity = 100
burnDaemon ()
{
if (fuellLevel < 4 && fuellevel > 0)
"\nThe oil lamp is starting to burn low. ";
inherited;
}
iobjFor (PourInto)

{

verify ()
{
if (fuellevel == fuelCapacity)
illogicalNow ('The oil lamp is already full.');
if (isLit)

illogicalNow ('You can\'t pour fuel into the lamp while it\'s lit. ');
}
check ()
{
if (gDobj.oillevel == nil)
failCheck ('That\'s not appropriate fuel for an oil lamp. ');
}
action ()
{
local fuelTransferred = min(gDobj.oillLevel, fuelCapacity - fuellevel);
fuellevel += fuelTransferred;

gbhobj.oillevel -= fuelTransferred;
if (fuellevel == fuelCapacity)

"You refill the lamp. ";
else

"You pour some oil into the lamp. ";
}
}
bulk = 2

weight 2 + (4 * fuelLevel)/fuelCapacity

There's nothing very complicated in any of this. We include the check for fuelLevel > 0 (as well as fuelLevel < 4) in the
overridden burnDaemon to avoid being told that the lamp is burning low after it's gone out. The two checks in
verifylobjPourlnto prevent the player from filling a lamp that's already full, or pouring oil in while the lamp is lit, while
checklobjPourlnto won't allow anything to be poured into the lamp from an object that hasn't got a non-nil oilLevel
propety. The action method then calculates the amount of oil poured in, which is the lesser of the amount of oil in the
source container and the amount needed to fill the oil lamp to capacity. This quantity is then added to the fuelLevel in
the lamp and deducted from the oilLevel in the source container, following which an appropriate message is displayed
to describe the action. Since one might expect the weight of the oil lamp to vary with the amount of fuel it contains,
the weight property is calculated appropriately.

The obvious source for oil for the lamp is the oil can we have already defined. But to make it suitable as a source for
the lamp, we almost have to redefine it totally. While we're at it, we'll also move it into the smallCave:

oilCan : Thing 'oil can/oilcan' 'can of o0il' @smallCave
"The can is <<howFull()>>. "
howFull ()

{
Page 106

TADS 3 Tour Guide
if (oilLevel<l)
"empty";
else if (oillevel < maxOilLevel/10)
"almost empty";
else if (oillevel < maxOillLevel/3)
"about quarter full";
else if (oillevel < (2*maxOilLevel)/3)
"about half full";
else
"more or less full";
}
initSpecialDesc = "An old oil can lies abandoned on the ground. "
dobjFor (PourOnto) { verify() { } }
dobjFor (PourInto)
{
verify()
{
if(oilLevel < 1) illogicalNow('The o0il can is empty. '");
}
}
dobjFor (LookIn) asDobjFor (Examine)
initializeThing ()
{
inherited;
oilLevel = maxOilLevel;

}

oilLevel = 0

maxOilLevel = 500

weight = 1 + (10 * oilLevel)/maxOilLevel

This is perhaps less complicated than it looks. The lengthy howFull() method merely provides a description (or rough
estimate) of the amout of oil left in the can. The verifyDobjPourinto makes it illogical to pour any more oil from the
lamp when it is empty. The initializeThing method makes sure the can starts off full, and once again we calculate the
weight based on the amount of oil left in the can. It would probably be an unnecessary complication to add any further
handling for PourOnto, since the amount of oil involved in lubricating the latch on the sailors' locker (or anything else
that we may decide needs lubricating) is likely to be negligible.

7.7. Matchstick & Matchbook

Although the oil lamp makes a much more convenient light source than the stock of candles, it could still be
inconvenient if it went out some distance from a naked flame. We could make things easier for the player by providing
a book of matches. Both the Matchbook (a subclass of Dispenser) and Matchstick (a subclass of LightSource and
FireSource) are defined in the library, and can be used with very little customization. All we need to do is to provide a
description for the Matchbook and a name and some vocabulary for our Matchsticks. If we wanted various different
types of Matchstick in our game we might have to define subclasses of Matchstick to do it on, but in this case we can
simply override the Matchstick class.

matchbook : Matchbook 'book matches' 'book of matches'
@ (dressingTable.subUnderside)
"The matchbook bears a picture of a banana and the words
CABAL LIGHTING CO. "

’

modify Matchstick
vocabWords = 'match matchstick*matches'
name = 'match'
isEquivalent = true;

Matchstick;
Matchstick;
Matchstick;
Matchstick;
Matchstick;
Matchstick;

+ 4+ o+ o+

Page 107

TADS 3 Tour Guide
+ Matchstick;
+ Matchstick;
+ Matchstick;
+ Matchstick;

7.8. Dynamite

For some time now we've had that pesky boulder blocking the cave to the west of main cave, and we've had to allow
the player to pick it up in the absence of any way to blow it up. Well, now the time has come to try for a more explosive
solution.

Not only might a stick of dynamite look a little like a candle, in some ways it behaves a little like one, except that
something a bit different happens when it burns down. We could probably thus make a reasonable stab at a stick of
dynamite by adapting a Candle and overriding sayBurnedOut() for the explosion. The main complication is handling all
the different situations that could arise when the dynamite explodes. To keep things manageable, we'll handle just
four. If the player character is still holding the dynamite when it explodes, s/he's killed. If the player character is close
enough to the dynamite to touch it when it explodes, s/he's still killed, but with a different message. If the dynamite
explodes when it's in a position to destroy the boulder, the boulder is destroyed and the dynamite removed. That
leaves the situation where the dynamite explodes when the player character is at a safe distance, but is not in the right
place to destroy the boulder. If we simply removed the stick of dynamite this would leave the player character alive,
but the game unwinnable, so we need instead to allow the player to retrieve it again (under the guise of another stick
of dynamite). We shall simply ignore the question of what damage the explosion might do to any other objects in the
game, since to implement it would probably be too complicated.

One thing at a time; first we need to amend the definition of the boulder:

+ boulder : Container, Heavy 'boulder/crack' 'boulder'
"The huge boulder is blocking the exit to the west; there seems to be a
small crack in it. "
bulkCapacity = 2

’

We make the boulder a Container as well as Heavy so that we can insert the dynamite in it, and we describe it as
having a crack to give the player a clear hint that that's what s/he's meant to do.

We'll give the dynamite a short fuse and not much illumination when lit, and an appropriate description. The
complication comes in the sayBurnedOut() method. We'll first test for the player character holding the dynamite and
kill him or her if s/he is. We'll then do the same but with a different message if the player character is in a position to
touch the dynamite, which we can test with the dynamite's canBeTouchedBy method. We'll then see if the dynamite
is in the boulder. If it is we'll replace the boulder with boulder fragments. Penultimately we'll move the Dynamite back
into nil and reset its fuelLevel to 3 in case we need to reuse it.

The really tricky bit is how to let the player know that the dynamite has exploded. Since the sayBurnedOut() method is
called by a SenseDaemon, it or any method called by it won't display any text unless the dynamite is in scope for the
player character; but if the dynamite were in scope, the player character would already be dead. But we don't want to
keep the player guessing how long it takes for the dynamite to explode. Since the fuse is so short we can virtually
guarantee that the player character will still be in earshot when the dynamite explodes, so we don't want to get
involved in complex sense path calculations or the setting up of lots of SenseConnectors and SensoryEvents. The
simplest way to get round the sensory context set up by the SenseDaemon used on the Candle class is to use the
callWithSenseContext function to set up a temporary, different sense context:

dynamite : Candle 'stick dynamite/fuse' 'stick of dynamite'
"It's a white cylinder with a short fuse. <<isLit ?
'The fuse is lit and burning down fast. ' : nil >>"

fuellevel = 3
brightnessOn = 1
sayBurnedOut ()
{
if (isHeldBy (gPlayerChar))
{
"The dynamite explodes with a mighty bang and blows your hand off. But
since you're killed by the blast you probably won't be needing it
any more.\b";
endGame (ftDeath) ;

Page 108

TADS 3 Tour Guide
if (canBeTouchedBy (gPlayerChar))

{
"The dynamite denonates close by, but you are killed by the blast almost
before you hear the bang. ";
endGame (ftDeath) ;

}

if (isIn (boulder))

{

boulderFragments.moveInto (boulder.location);
boulder.moveInto(nil) ;

}

callWithSenseContext (nil, nil, {:"You hear a muffled explosion nearby. "});
moveInto (nil);
fuellevel = 3;

If the first two parameters (source and sense) of callWithSenseContext are nil then we effectively creating a universal,
unrestricted sense context, allowing whatever happens in the function forming the third argument to be sensed from
anywhere. We use the short form of this function definition, which means precisely the same as if we had written new
Function { "You hear a muffled explosion nearby. "; }. We could have avoided all this complication had
we used a Fuse on the dynamite, instead of trying to adapt the Candle. We'll remodel the dynamite using a Fuse in
due course.

Finally, we need to define the boulderFragments object that is to replace the boulder when the dynamite detonates:

boulderFragments : Decoration 'boulder larger fragments/chunks' 'boulder fragments'
"Most of the fragments are tiny, though there are a few larger chunks.

They are scattered everywhere. "
inRoomDesc = "Fragments of a boulder are littered all over the cave.

isPlural = true

Note that this once again makes use of our custom inRoomDesc property (which adds itself to the room description).
A game that hadn't implemented this device would probably have to use specialDesc instead.

There is still one task left to achieve, namely to provide the player with a way of finding the dynamite in the first place.
We'll cover that as the first task in the next chapter. In the meanwhile, if you want to try it out, you can temporarily set
the dynamite's starting location to somewhere convenient like mainCave - but don't forget to set it back again (to nil)
before starting the next section.

Finally, for the endGame() function, see above on cannotGoThatWaylnDark, where we first defined it.

Page 109

TADS 3 Tour Guide

8. Hiding & Finding

8.1. Hiding & Finding - Introduction

Nothing is hidden except in order to be revealed, nor does anything become concealed but that it might come into the
open. - Mark 4.22

Mark was writing about Jesus' parables, not Interactive Fiction, although since according to at least some
commentators Mark treats Jesus' parables as riddles and according to Nick Montfort (Twisty Little Passages.
Cambridge, MA & London: MIT Press, 2003) the riddle is of the precursors of IF, there may be a tenuous link here. It
may be that Mark portrays Jesus' parables as employing concealment as a strategy of revelation; it is certainly the
case that IF authors often hide objects in their games with the intention that the player will find them (hopefully with
more success than the disciples in Mark).

There are various ways objects can be hidden and made to appear in response to a player action. We'll first explore
how this can be done using Classes and concepts we've already met, and show how the library classes Hidden and
PresentLater can help with the task.

8.2. Hiding with Words

Perhaps the most basic way you could go about trying to hide something is by obscuring the way it's described, at
least until it comes into the player's possession. We want to make the diamond lying at the end of the path a bit less
obvious. To do this we could juggle the various description and name properties of the diamond, giving it a null string
initSpecialDesc so it isn't listed anywhere until moved, and employ our custom inRoomDesc method to add a little hint
to the room description. As a first (and somewhat over-the-top attempt) we might try something like:

diamond : Thing 'sparkle' 'sparkle' @pathEnd
"It looks like a genuine diamond - and a valuable one too, exquisitely cut
and multifaceted. "
iobjFor (CutWith) { verify() { } }

initSpecialDesc = ""

initDesc = "It's hard to make out; maybe there's something there, or
maybe it's just a trick of the light. "

inRoomDesc ()

{
if (!moved) "Something seems to sparkle among the rocks. ";
}
movelInto (newDest)
{
if (!moved)
{
initializeVocabWith('sparkling diamond') ;
name = 'diamond';
"Take a sparkle? You'll be wanting to drink a rainbow next!\b
Oh well, if you insist. So, you scrabble among the rocks with your
clumsy little finger and - my goodness! They close upon the sparkle,
and as you pick it up it turns out to be something very solid and
hard after all - a diamond no less! ";
}

inherited (newDest) ;

’

Decoration 'rocks' 'rocks' @pathEnd
desc = (diamond.inRoomDesc)
isPlural = true

’

This is really pretty horrendous, quite apart from the sarcasm of the message displayed when the player first takes the
diamond, he or she is meant to guess that the correct action here is TAKE SPARKLE. This makes it little better than a
"read the author's mind" puzzle. It can be improved, however, by adding handling for searching the rocks (which is
something the player is more likely to think of):

Page 110

TADS 3 Tour Guide

diamond : Thing 'sparkle' 'sparkle' @pathEnd
"It looks like a genuine diamond - and a valuable one too, exquisitely cut
and multifaceted. "
iobjFor (CutWith) { verify() { } }

initSpecialDesc = ""

initDesc = "It's hard to make out; maybe there's something there, or
maybe it's just a trick of the light. "

inRoomDesc ()

{
if (!moved) "Something seems to sparkle among the rocks. ";
}
movelInto (newDest)
{
if (!'renamed)
{
"When you pick it up it turns out to be a gem - a diamond no less! ";
rename () ;
}
inherited (newDest) ;
}
rename ()
{
initializeVocabWith('sparkling diamond') ;
name = 'diamond';
renamed = true;
}
renamed = nil;

’

Fixture 'rocks' 'rocks' @pathEnd
desc = (diamond.inRoomDesc)
isPlural = true

dobjFor (LookIn)
{

action ()
{
if (diamond.moved)
"There's not much here. ";
else if (diamond.renamed)
"A diamond nestles among the rocks. ";
else

{

diamond. rename () ;
"Hunting diligently among the rocks you come across the source of the
sparkle - something tangible and hard - a diamond! ";

This may be acceptable, but it's quite a lot of code for finding a diamond, and unless this is exactly what you want,
there are probably better ways of doing it, as we shall see.

8.3. Finding by moving

Finding concealed items can be implemented in code using the classes and methods we have already seen, e.g. by
moving an object from nil into the player character's location when it is discovered. This is the technique we'll use to
find the dynamite. We'll assume that the dynamite is buried in the sandy floor of the small cave. Since it's not obvious
that one should dig there, and the player can hardly be expected to try digging in every location in the game, we'll drop
a heavy hint by leaving a spade leaning against the wall of the cave:

spade : Thing 'spade' 'spade' @smallCave
"It's a good solid spade, with a stout wooden handle and sharp steel blade. "
initSpecialDesc = "A spade leans against the wall of the cave. "
verifyIobjDigWith { logicalRank (150, 'digging implement'); }

Page 111

TADS 3 Tour Guide
Note that the last line of this definition is simply a more compact way of writing:

iobjFor (DigWith)
{

verify() { logicalRank (150, 'digging implement'); }
}

Having defined the digging implement, we need to define a floor that can be dug in and will yield dynamite when dug.
You will recall that we start the dynamite in limbo (i.e. location = nil). Once the dynamite is discovered, we do not want
the player to find another stick, unless the first one has been destroyed (by exploding). When it is destroyed, the stick
of dynamite is moved back into nil, which means the player could then dig up another one from the small cave floor.
This is fine, since it prevents the game becoming unwinable should the player allow his first stick of dynamite to
detonate in the wrong place. It would be good, however, to indicate that the second (and any subsequent) stick of
dynamite is 'another' one, and not the same one miraculously reconstructed (even though, in the internal
implementation, that's precisely what it is). We'll want our sandy diggable floor to be a replacement for the defaultFloor
in the cave, so we'll derive it from that:

smallCaveFloor : defaultFloor
desc = "The floor of this cave is very sandy. "
dobjFor (DigWith)
{
verify () { }
action ()
{
local another = (dynamite.moved ? 'another' : 'a');
if (dynamite.isIn(nil))
{
"You uncover <<another>> stick of dynamite. ";
dynamite.moveInto (smallCave);

}
else
"You dig in the sand for a while but find nothing. ";

Finally, we need to amend our definition of smallCave so that it incorporates our special floor:

smallCave : DarkRoom 'Small Cave' 'the small cave'
"The only way out of this small, sandy cave is to the south. "
south : TravelMessage

{
-> secretPassage
"You walk south for quite some way down a long tunnel. ";

}

roomParts = static inherited - defaultFloor + smallCaveFloor

8.4. sightPresence & isListed

Perhaps an even simpler way to hide an object and then reveal it is to set its sightPresence and isListed properties
to nil. The former effectively put the object out of scope for any commands (such as TAKE or EXAMINE) and the latter
prevents it being listed in the room description until sightPresence is set to true. We'll see how this works by hiding
another of our coded tablets in the squareCave:

stoneTablet : Tablet '(loose) stone tablet*tablets' 'stone tablet' @squareCave
inscription = "O P E RA\nY NUE R\nS TET S\nI NFE F\nP ANTZC"
weight = 16
sightPresence = nil
isListed = (moved)

’

You may recall that the way out of this cave is through a stone archway we defined someway back as example of an
ExitPortal. This would seem a good place to hide the stone tablet; the player will only learn of the tablet's existence if
he or she examines this arch. We don't want the stone tablet listed separately until it's free of the arch, which is why
we set isListed = (moved) here, but we'll want the player to be able to interact with the tablet once he or she has
examined the arch, so we set sightPresence to nil initially and let the archway set it to true when it's examined:

Page 112

TADS 3 Tour Guide

+ ExitPortal -> mainCave 'ashlar arch/archway' 'archway'
"The archway is beautifully constructed from dressed stones. <<looseStone>> "
looseStone ()

{

if (!stoneTablet.moved)

{
stoneTablet.sightPresence = true;
"One of them seems a bit loose. ";

}

else
"There's a gap in the stonework where one of them is missing. ";

There's one further complication we have to bear in mind with this method, however, and that is if we had put the
stone tablet in a container (e.g. making the archway a container from which the tablet could be removed and then
reinserted) we should also need to add isListedInContents = (sightPresence), otherwise the tablet would
announce its presence when its container was examined, even if this wasn't what we wanted.

In the case of the stone tablet, manipulating sightPresence and isListed works reasonably well, not least because we
want them to become true under slightly different conditions. Again, with items that descend from NonPortable, which
would not normally be listed anyway, manipulating sightPresence can often be the most efficient means of bringing
something to light (as in the example of the hole at the end of the fluid link, which we'll come to eventually). Otherwise,
though, it is usually simpler to use the Hidden class, which we shall look at next.

8.5. Hidden

The Hidden class provides a very convenient means of temporarily hiding something you want discoved later by some
action by the player. It's a subclass of Thing that adds a discovered property and a discover method. By default, a
Hidden starts with its discovered property set to nil. The overridden canBeSensed method then hides the object from
the player (making it effectively invisible) until discovered is set to true, which is what calling the discover method
does.

Suppose we want to hide the brass key under the rug in the roundCave. One way we can do this is simply to add
Hidden to brassKey's class list and then override rug.actionDobjForLookUnder [= the action method in
dobjFor(LookUnder)] to call brassKey.discover if the brass key has not yet been discovered:

brassKey : Hidden, Key 'small brass key' 'brass key' @roundCave

"It<<isBent ? ' looks slightly bent' : '\'s been straightened'>>. "
isBent = true
rug : Immovable 'large rectangular chinese rug/pattern/leaves/dragons' 'Chinese rug'
@roundCave

"The rectangular rug is patterned in pastel colours, mainly turquoise round the
edge and principally golds and browns within. The patterns consists mainly
of leaves and dragons. "

initSpecialDesc = "A Chinese rug covers the centre of the floor. "
specialDesc = "The Chinese rug has been pulled over to one side of the cave. "
cannotTakeMsg = 'You probably could roll the carpet up and drag it around,

but you don\'t want to be encumbered with it. '
dobjFor (Pull)
{
action ()
{
if (moved)
"You can't pull the rug any further, it's already at the edge of the cave. ";
else
{
"Pulling the rug over to the edge of the cave reveals a square hole in the floor. ";
moved = true;

Page 113

TADS 3 Tour Guide
actionDobjLookUnder ()

{
if (brassKey.discovered)
"{You/he} find{s} nothing else under the rug. ";
else

{
"Under the rug {you/he} find{s} a small brass key. ";
brassKey.discover() ;
addToScore (1, 'finding the brass key ');
}
}

’

Although it's not strictly necessary here, I've taken the opportunity to slip in an example of the addToScore() function.
As defined here, it will add one point to the player's score together with the explanation (should the player issue a
FULL SCORE command) that the award is for finding the brass key. You should be aware that this function will
increase the score every time it's called, so you want to make sure it can only be called once if you only want the
score to be increased once (or use the addToScoreOnce method instead). Since in this case we can be sure that the
else clause will only be executed once, it's safe to use addToScore here. We'll come to a full discussion of scoring
later.

Another (and in this case, simpler and easier) way of hiding something under something else is to put it in an
Underside, normally the subUnderside of a ComplexContainer. We could so this with the book of matches we defined
earlier, then they won't be revealed until the player specifically orders LOOK UNDER DRESSING TABLE, at which
point they'll automatically be revealed. To do this, all we need to do is to add Hidden to the matchbook's class list:

matchbook : Hidden, Matchbook 'book matches' 'book of matches'
@ (dressingTable.subUnderside)
"The matchbook bears a picture of a banana and the words
CABAL LIGHTING CO. "

8.6. PresentLater

The PresentlLater class is slightly more complicated than the Hidden class, although it can be used in ways that look
much the same to the player. The official purpose of a PresentLater is to define an object that is not yet where you
place it. That is, you can give a PresentLater object a starting location where you want it to appear subsquently, but at
the preinitialization stage this location will be stored in its eventualLocation property and the object moved into nil. At
the point in your game when you want it to appear in its predefined location you call its makePresent() method. Thus
we could have implemented hiding the brass key by making it a PresentLater, Thing (note that PresentLater is a mix-
in class - it does not descend from Thing itself) instead of a Hidden, by calling brassKey.makePresent() instead of
brassKey.discover, and by testing if(brassKey.moved) instead of if(brassKey.discovered). The effect (in terms of the
transcript seen by the player) would have been identical. The main difference is that by using Hidden the brass key
was in roundCave all along (but not visible until discovered), whereas by using PresentLater the brass key would not
have been in roundCave until makePresent() was called.

There is one important distinction to bear in mind here, though, and that is that calling makePresent() on a
PresentLater sets its moved property to true (since makePresent calls movelnto) while calling discover on a Hidden
does not (because a Hidden is not moved when it is discovered).

In a simple case like that of the brass key where Hidden will do the job, it's probably best to use Hidden, unless there's
some reason why you actually want the object concerned to be moved rather than simply made visible. In more
complex cases, however, PresentLater may be the better choice, since it has a number of other methods we have yet
to explore, and which make it a rather more powerful class than might appear from what we have seen so far.

In addition to its makePresent, method, PresentLater has a makePresentlf(cond) method; this moves an object from
nil to its eventualLocation if cond is true, otherwise it moves it into nil. We can illustrate this by adding a console to the
Tardis control room; the console has a panel behind which is a shallow compartment. Effectively, the compartment is
only present in the control room if the panel is open, so we could use makePresentlf(cond) to bring it into the control
room when the panel is opened and back into nil (in this case, out of sight) when the panel is closed:

tardisConsole: Fixture ' (tardis) hexagonal control console' 'console' @tardisControlRoom
"The six-sided console stands in the middle of the room. Amongst its controls
are a slider, a dial, and a big red button. Beneath these is
a panel set in the side of the lower part of the console. "

Page 114

TADS 3 Tour Guide

+ tardisPanel : Openable, Component 'panel' 'panel'
makeOpen (stat)
{
inherited(stat);
tardisPanelCompartment.makePresentIf (stat);
if (stat)
"Opening the panel reveals a shallow compartment behind. ";

’

+ tardisPanelCompartment : PresentlLater, RestrictedContainer, Fixture 'shallow compartment'
'shallow compartment' "It's about four inches deep. "
validContents = [fluidLink]

’

++ fluidLink : Thing 'fluid link' 'fluid link'
"It's a long transparent tube, half full of mercury. "

We'll do more with the fluid link later. For the moment let's continue to explore PresentLater. Let's suppose that in
addition to the compartment we want a notice on the back of the panel that's only visible when the panel is open. We
can make this a PresentLater too, and we could simply add tardisPanelNotice.makePresent(stat) to the definition of
tardisPanel.makeOpen. But there is an alternative if we want to make several objects present at once: we can use
makePresentByKey(key). To use this you need to define a plkey on each of the PresentLater objects you want
controlled by the single statement; e.g. you could define pl1key = 'tardis' on both the compartment and the notice.
To make all objects whose plkey is 'tardis' present at once you would then call

PresentLater.makePresentByKey ('tardis'); note that this method is called on the PresentLater class. In this
case, however, we need to go one better still and use the makePresentByKeylf(key, cond) method:

+ tardisPanel : Openable, Component 'panel' 'panel'
makeOpen (stat)
{
inherited(stat);
PresentLater.makePresentByKeyIf ('tardis', stat);
if (stat)
"Opening the panel reveals a shallow compartment behind and a notice on
the back of the panel. ";

’

++ tardisPanelNotice : PresentlLater, Component 'notice' 'notice'
"The notice reads:\bFor best results ensure the fluid link is full of mercury. "
plKey = 'tardis'

+ tardisPanelCompartment : PresentlLater, RestrictedContainer, Fixture 'shallow compartment'
'shallow compartment' "It's about four inches deep. "
validContents = [fluidLink]
plKey = 'tardis'

’

++ fluidLink : Thing 'fluid link' 'fluid link'
"It's a long transparent tube, half full of mercury. "

One final point about PresentLater, which we'll describe without illustrating in our game, is that it's possible to use this
class for an object that sfarts present and subsequently disappears. To do this we set its initiallyPresent property to
true. It can then be made to disappear by calling makePresentlf(nil), and to reappear again by calling makePresent.

Page 115

TADS 3 Tour Guide

9. Gadgets & Controls

9.1. Gadgets - Introduction

By gadgets we mean devices that incorporate buttons, switches, levers and the like, but also other odd gadgetry of the
game author's devising. In the present chapter we shall explore some of the library classes that can be used in
gadgets, and then go on to construct a couple of gadgets (or gadget-like puzzles) out of other elements.

What (for want of a better general term) we might call the library's 'gadget' classes include:

Button

Lever
SpringLever

OnOffControl
Switch

Settable
Dial

LabeledDial
NumberedDial

9.2. Button

The Button is the simplest kind of gadget class. It is simply something you can PUSH or PRESS. By default it then
simply displays a message saying "Click. ", but you'll nearly always want to override this to do something else. You do
so by overriding the action method of its Push handling, i.e. either

myButton : Button 'button' 'button'
dobjFor (Push)
{

action ()

{
/* My button-push handling here */

}
}

Or the functionally identical but cosmetically more compact (though arguably less clear) equivalent:

myButton : Button 'button' 'button'
actionDobjPush

{
/* My button-push handling here */

}

’

This is so simple that we have already used a couple of buttons: the first to open the HiddenDoor in the main cabin,
and the second in the implementation of the Autorectifying device. We'll continue to use buttons on our various
contraptions, notably on the Tardis control console, but there's no need to give another specific example here.

Page 116

TADS 3 Tour Guide

9.3. LabeledDial

The time has come to set sail in our ship. The panel on its quarterdeck is described as having a hexagonal hole, a
wheel, and a lever. In order to sail the ship the player has to insert the hexagonal crystal in the hole, set the wheel to a
destination, and pull the autopilot handle. The ship has four possible destinations, namely the north, east, south and
west shores of the lake. It starts by the north shore, so the player will obviously have to turn the wheel to one of the
other destinations to set sail for the first time.

We have already implemented the hexagonal hole (as a RestrictedContainer), so the next task is to construct the
wheel. This in essence will be a thinly disguised dial that can be turned to N, S, W or E, so we shall use a LabeledDial
to implement it. We list its possible settings in the validSettings property (which should always contain a list of
strings). By default LabeledDial.isValidSetting(val) determines whether val is a valid setting by checking that it
appears in the validSettings list, after converting both to upper case for the purpose of the comparison (thereby
making the check non-case-sensitive). This does not itself convert the curSetting (current setting) property to upper
case, which is what we want here, so we need to override makeSetting(val) so that this conversion takes place. This
conversion is desirable both becase it looks better to have the game report "This shows that the wheel is currently
turned to E" than "This shows that the wheel is currently turned to e" (even if the player types TURN WHEEL TO e),
and because it sightly simplifies the other use we are going to make of the curSetting property here, namely to
determine the direction and destination of travel that correspond to the current setting of the wheel:

++ wheel : LabeledDial, Component 'wheel/pointer' 'wheel'
"It looks much like a traditional wooden spoked ship's wheel, but incorporates a
pointer that indicates the four points of the compass. This shows that the wheel
is currently turned to <<curSetting>>. "

validSettings = ['N', 'S', 'E', 'W']

curSetting = 'N'

directions = ['north', 'south', 'east', 'west']
destinations = [lakeRoom, southShore, eastShore, westShore]

makeSetting (val)

{
curSetting = val.toUpper();

}
curDirection = (directions [validSettings.indexOf (curSetting)])
curDestination = (destinations [validSettings.indexOf (curSetting)])

9.4. SpringlLever

A SpringLever is a lever that returns to its original position after being pulled. It is functionally similar to a Button,
except that it responds to PULL instead of PRESS or PUSH. Apart from giving SpringLever the usual vocabulary,
name and description properties, all one need normally do is to override its actionDobjPull method with whatever one
wants to happen when the lever is pulled. In this case we want nothing to happen unless the hexagonal crystal is in
the hexagonal hole and the wheel points to a destination other than where the ship already is, so we first test for these
cases. If the conditions for setting sail are met, we display a suitable message making use of wheel.curDirection
(defined in the LabeledDial example above) to describe the direction of travel, and then move the ship into its new
destination as defined by wheel.curDestination:

++ SpringLever, Component 'long silver (black) lever/knob/plaque' 'lever'
"It's a long silver lever with a black knob on the end. A silver plaque
screwed just underneath it is inscribed AUTOPILOT. "
dobjFor (Pull)
{
action ()
{
if ('hexCrystal.isIn (hexHole) || wheel.curDestination == ship.location)
"Nothing happens. ";

else
{

"A hum starts up deep in the bowels of the ship. With a reluctant creak,
the capstan turns, drawing up the anchor. The ship judders, then starts
gliding out into the middle of the lake. From there
it continues <<wheel.curDirection>> until it comes to rest by the
<<wheel.curDirection>>ern shore, where the capstan lowers the anchor,
and the ship moors itself up, port side to the shore. ";

Page 117

TADS 3 Tour Guide

ship.moveInto (wheel.curDestination) ;

Before trying this out, it would be well to define the three new locations that can now be reached by the ship. If you are
splitting your code into separate source files, you might like to start a fresh source file for each of these rooms, since
each will be the start of a new region of the map:

eastShore : Room 'Stone Jetty' 'the stone jetty'
"This bleak stone jetty is little more than a narrow corridor between the lake to
the west and the rough cave wall to the east. A broad flight of stone steps leads
down to the south, while a much narrower flight leads up to the north. "

’

westShore : Room 'Sandy Beach' 'the sandy beach'
"For an underground lake this section of shore forms a surprisingly large beach. The
lake laps the shore to the east, while a pair of paths lead up from the beach to the
cave complex beyond, one to the northwest and the other to the southwest. "

’

southShore : Room 'Rocky shore' 'the rocky shore'
"The rocky shore looks so barren here as to be scarcely worth visiting, apart
from a narrow tunnel leading off to the south. "

Note: depending on when you last recompiled the game you may need to do a complete recompile (Build -> Full
Recompile for Debugging) after adding these locations. Having done so, you can try sailing the ship round the lake.

9.5. Settable

Settable is the base class for the various types of Dial, like the LabeledDial we constructed a couple of sections back.
It can also be used to construct any other kind of settable control we care to devise. Here we'll use it to implement a
slider on the Tardis control console; after all, now we've got the ship to sail round the lake, it's time to see what we get
the Tardis to do.

What we want to achieve is quite complicated. Ultimately the Tardis will be controlled by a combination of a slider that
can be set to any letter from A to Z and a dial that can be turned to any number from 0 to 9. The Tardis's destination
will be decided by a combination of both settings (making 260 in all), but unless the fluid link is refilled with mercury,
the slider setting will have no effect. Some of the Tardis's destinations will be predefined (the interesting ones), while
we'll dynamically create (rather boring) ones for when the player goes to an undefined destination. This makes it very
hard for players to find the useful destinations by trying settings at random - instead they'll have to find the suitably
planted list of useful destinations.

So much for the summary, now let's get on with the implementation. As promised, we'll first make the slider. Make
sure the following code is positioned in your code so that the slider is a Component of the tardisConsole object:

+ tardisSlider : Settable, Component 'slider' 'slider'
"The slider can be set to any letter of the alphabet.
It's currently set to <<curSetting>>. "
curSetting = 'A'
makeSetting(val)

{
curSetting = val.toUpper;

}
isValidSetting(val)

val = val.toUpper;
return (val >= 'A') && (val <= 'Z') && (val.length==1);
}

setToInvalidMsg = 'The slider can be set only to a single letter from A to Z. '

Once again we override makeSetting to convert a lower case entry to an upper case one. The only new factor here is
the need to override the isValidSetting method to define what settings we'll accept. In this case we want to accept

Page 118

TADS 3 Tour Guide

any single character setting between A and Z inclusive, so we test accordingly. Finally, we override the
setTolnvalidMsg to display a more meaningful message in the event of the player attempting to set the slider to an
inappropriate setting, such as SET SLIDER TO 9 or SET SLIDER TO OMEGA.

As things stands, the only verb that can be used to set the slider is SET; players might legitimately try to MOVE,
PUSH or PULL the slider to a new setting. To cater for this we'll expand the vocabulary for the SetTo action:

modify VerbRule (SetTo)
('move' | 'push'| 'pull' | 'set') singleDobj 'to' singleliteral

’

This might be a bit more liberal than we'd ideally like (e.g. since you can SET DIAL TO 7 you'll now also be able to
PUSH DIAL TO 7, PULL DIAL TO 7 or MOVE DIAL TO 7 as well), but erring a little on the side of liberality in allowing
player commands is probably no bad thing.

9.6. NumberedDial

A Numbered Dial is simply a dial that can be turned to a number of numerical (and only numerical) settings. The
definition of the numbered dial on the Tardis control console is pretty straightforward. We need to use two new
properties used on NumberedDial, minSetting and maxSetting, which, as their names suggest, contain the minimum
and maximum numerical value to which the dial can be set. Again, the object must be placed in your code so that it's a
Component of tardisConsole:

+ tardisDial : NumberedDial, Component ' (tardis) control dial' 'dial'
"The numbers round the dial run from 0 to 9; the dial is currently set to <<curSetting>>. "

minSetting = 0

maxSetting = 9

curSetting = '0'

disambigName = 'Tardis control dial'

’

Note the need for a disambigName and the extra vocabWords corresponding to it; if the scales are in the control room
at some point (as they probably will be once the player has picked them up) there would otherwise be no way the
player could refer to this dial in preference to that on the scales.

One thing in particular you need to watch out for on NumberedDials is that while minSetting and maxSetting are
numerical properties, curSetting is a string property. This can easily catch you out if you expect curSetting to contain
a number because it's a property of a NumberedDial. What curSetting in fact contains here is a string representation
of the number. If for any reason you need its numerical value (e.g. for calculation or comparison purposes) you will
need to convert it using the tolnteger function, e.g. (if we imagine a situation with two numbered dials):

local overallSetting = 10 * tolInteger(diall.curSetting) + tolInteger (dial2.curSetting);

We shan't be needing to do that in this game; instead we'll take a brief (or perhaps not-so-brief) diversion from the
gadget classes to construct a custom gadget for moving the Tardis round the universe in time and space.

9.7. Dynamic Locations

We now come to the complicated part, writing the code that will move the Tardis into a variety of locations (including
dynamically-created ones) depending on the setting of the slider and the dial we've just defined. We'll start by defining
the button the player has to press to set the Tardis in motion. Two rules will be enforced before the Tardis is moved:
first the outer door to the Tardis must be closed, and secondly the fluid link must be in place inside its compartment. If
the fluid link is not full, the slider will be treated as being set to 'A’ regardless of its actual setting. We then query
another object (to be defined below) to determine the Tardis's destination based on the setting of its two controls, and
move the Tardis into its new location. Again, remember to place this definition in your code so that it's a Component of
tardisConsole:

Page 119

TADS 3 Tour Guide

+ tardisButton : Button, Component 'big red button' 'big red button'
dobjFor (Push)

{
check ()

{

if (tardisDoorInside.isOpen)
{
"A red warning message flashes up on the console:\n
DOOR OPEN - TRAVEL ABORTED<.p>";
exit;
}
}

action ()

{

if (!fluidLink.isIn(tardisPanelCompartment))
{

"Nothing happens. ";

return;
}

"The central control column pumps up and down with the strange wheezing
sound that only a superannuated TARDIS can make, and you feel the weird
sensation of being translated along unfamiliar dimensions. After about
half a minute, it all stops. ";
local destcode = (fluidLink.full ? tardisSlider.curSetting : 'A')

+ tardisDial.curSetting;
local dest = tardisDestinations.destination (destcode) ;
tardis.movelnto (dest);
if (dest == outsideCave) entranceTunnel.blocked = true;

’

The reason for the final line of code is to ensure that the tunnel is blocked when the Tardis arrives outside the cave,
even if the player hasn't previously triggered the rockfall by climbing the ladder up from the main cave. Otherwise, the
game could become unwinnable (since if the player character left the Tardis outside, entered the cave and climbed
down the ladder, climbing the ladder again would trigger the rockfall, rendering the game unwinnable).

At this point, you might want to add a full property to the fluid link:

++ fluidLink : Thing 'fluid link' 'fluid link'
"It's a long transparent tube, half full of mercury. "
full = true

’

We'll change this definition in due course, but having the fluid link always full for now will give you access to all the
possible Tardis destinations while you're testing the Tardis drive.

Next we need to define the tardisDestinations object that will work out where to send the Tardis based on the settings
of the dial and the slider. There are potentially 260 locations keyed by a combination of letter and digit (e.g. A0, A2,
C9, T5). We shan't actually want to fill all these potential slots, but we do want an easy way of knowing what
destination corresponds to what slot (defined by a letter and digit combination). This is a good job for a LookupTable.
A LookupTable contains a set of pairs of arbitrary values, one of which is the key, and the other the value
corresponding to the key. To add such pair to the table (or modify the value corresponding to an existing key) you
simply use a statement of the form myTable [key] = value; To find the value corresponding to a given key you use
value = myTable[key];. We want the Tardis to start with a number of preset destinations, so we make
tardisDestinations a PreinitObject, which means that its execute method will be called during preinitialization. We use
that execute method to define our preset destinations with statements like destinations['A0'] = hold; (the
starting location of the Tardis).

If all the Tardis was going to do was visit these preset destinations, then all we'd need to do is to return
destinations[destcode] to any calling routine wanting to know the destination corresponging to destcode. But the
player will probably try several destcodes for which there is no entry in the destinations LookupTable (e.g. 'K2'), and
for which destinations[destcode] would therefore be nil. We have to decide how we will handle these cases. We could
just disallow travel in these instances, but we'll attempt something much more interesting: we'll create a new location
on the fly and add it to the table. However (just to complicate things still further!) we may want to limit the number of
dynamically-created locations that can be spawned by this means. To achieve this we'll add a destinationsCreated

Page 120

TADS 3 Tour Guide

property to keep track of how many we've created and a maxDestinationsToCreate property to hold the maximum
number of destinations we'll let be created. Rather than imposing a sharp cut-off when destinationsCreated reached
maxDestinationsToCreate, however, we'll gradually reduce the probability of creating a new locations till it falls to zero
when destinationsCreated hits the maximum. To achieve this we compare rand(101) (which returns a random number
between 0 and 100 inclusive) with destinations as a percentage of maxDestinationsToCreate. If rand(101) is less than
or equal to this percentage, we abort the creation of a new location and simply return nil. Clearly, once this percentage
reaches 100, we'll always abort, but when it's very low, we'll nearly always go ahead and create a new location.

Before we get there, however, we should check whether there's an existing location corresponding to destcode. If
there is, we simply return it. If there isn't, and we pass the probability test, we create a new destination, add it to the
table of destinations, and return it to the calling routine (in tardisButton.actionDobjPush). To create the new location
we simply do what we'd do to create any new object dynamically, call new plus the classname, in this case new
TardisDestination. We'll leave TardisDestination the job of defining itself:

+ tardisDestinations : SecretFixture, PreinitObject
destinations = static new LookupTable
execute ()
{
destinations['AO0'] = hold;
destinations['A2'] = spaceStation;
destinations['C9'] = redDesert;
destinations['T5'] = outsideCave;
}
maxDestinationsToCreate = 50
destinationsCreated = 0
destination (destcode)
{
local dest = destinations|[destcode];
if(dest !'= nil) return dest;
if(rand(101) <= (destinationsCreated * 100)/maxDestinationsToCreate)
return nil;
else
{
dest = new TardisDestination;

destinationsCreated ++;

}
tardisDestinations.destinations[destcode] = dest;
return dest;

There was strictly speaking no need to make tardisDestinations a SecretFixture as well as a PreinitObject here, but it
is convenient to fit it into the containment hierarchy (notionally as another part of the tardisConsole). An alternative
would have been to have made tardisDestinations purely a SecretFixture, and to have defined its destinations (or
called a custom method which did so) within its initialize Thing method.

We next need to go on to define the TardisDestination class. This will be a subclass of OutdoorRoom. All we'll create
with it is a set of fairly barren and boring outdoor locations, but it would be good to provide some superficial variation
between them. To do this we'll use TardisDestination's construct method, which is called whenever a dynamic object
is created with the new statement. In this particular construct method we'll randomly assign an epithet, a colour and a
terrain which in combination will make up the name of the room, and use those together with a randomized sky
description and a random synonym of 'stretches' to vary the room description. Finally, we'll want to give the player the
illusion of being able to wander around, so we'll point the cardinal direction properties to a series of FakeConnectors
(which we'll define separately rather than trying to create dynamically). The definition of the TardisDestination then
becomes:

class TardisDestination : OutdoorRoom

construct ()

{

epithet = rand('vast', 'barren', 'desolate', 'empty', 'lonely' , 'spooky', 'dead', 'grim');
colour = rand('ochre' , 'red', 'green' , 'black' , 'brown', 'blue' , 'grey', 'white');
terrain = rand('plain', 'forest', 'wilderness', 'swamp', 'jungle', 'tundra', 'desert',

'grassland' , 'wasteland', 'prairie');

name = '"*'+ epithet + ' \"'+ colour + ' \"' + terrain;

stretches = rand('stretches', 'extends', 'rolls', 'ranges', 'spreads', 'reaches');

sky = rand('clear blue sky', 'threatening dark clouds', 'weird orange sky',

'lurid green heavens', 'fluffy white clouds', 'black thunderclouds', 'reddening sky');

inherited() ;

}
Page 121

TADS 3 Tour Guide

desc = "This <<epithet>> <<colour>> <<terrain>> <<stretches>> as far as the eye can see
in all directions, one direction looking much like another under the <<sky>>. "
destName = ('the ' + epithet + ' ' + colour + ' ' + terrain)

north = wanderNorth
east = wanderEast
south = wanderSouth
west = wanderWest
epithet = nil
colour = nil
terrain = nil
stretches = nil

sky = nil

One point to note here is the use of the construct method; this is a special method that's called on any object created
dynamically through a new statement at the point of creation. Note that a constructor can take parameters like any
other method, in which case you would include them in the new statement. For example, instead of having
TardisDestination constructor randomly choose an epithet, colour and terraain for itself, we could have these passed
as parameters to the constructor:

class TardisDestination : OutdoorRoom
construct (myEpithet, myColour, myTerrain)
{
epithet = myEpithet;
colour = myColour;
terrain = myTerrain;

Then you could have set up a particular kind of dynamic TardisDestination with a statement like:

new TardisDestination('broad', 'purple', 'steppe'):;

However, in this game, we shall stick with the way we've done it. Of course it would be possible to elaborate this to
add further variety still, but the above definition suffices to show the principle. Next we need to define the four
FakeConnectors that all members of the TardisDestination will use:

wanderNorth : FakeConnector { "You wander off to the north for a while, but finding

nothing of interest you eventually turn round and come back. " }
wanderEast : FakeConnector { "You stride confidently off to the east, but the further

you go, the more it all looks the same, so after a while you

retrace your steps. " }

wanderSouth : FakeConnector { "The further south you go, the more you wish you hadn't
bothered, so in the end you give it up as a bad job and head back. " }

wanderWest : FakeConnector { "You carry on westwards as far as your legs will carry you,
but eventually you are forced to rest. Having rested, you decide you
really don't want to go any further that way, so you return the way
you came. " }

Again, these really all say the same thing in slightly different words, but some illusion of variety may be created
thereby.

Two of the preset destinations have already been created, the hold (in which the Tardis starts) and outsideCave
(where we need to return to win the game - having completed various other tasks). We need to define the other two
(we'll eventually be adding more than two, but two will do for now, just to demonstrate the principle). First, we'll add
the space station just as a stub to be filled in later:

spaceStation : Room 'Space Station - Observation Deck' 'the observation deck'

’

Then we'll add the redDesert, which we'll teasingly make resemble the randomly generated locations. We'll reward the
player who bothers to explore with another of the mysterious tablets, however, although we'll make it the least
valuable one so that players who don't find it won't miss too much.

Page 122

TADS 3 Tour Guide
/* The Red Desert World*/

redDesert : Room 'Vast Red Desert' 'the vast red desert'

"This huge red desert stretches to the horizon in all directions, all directions
looking much the same under the brassy sky, except that a faint trail leads east. "
north = wanderNorth
west = wanderWest
south = wanderSouth
east = redRavine

’

redRavine : Room 'Narrow Red Ravine' 'the narrow red ravine'

"The faint trail from the west comes to the end in this narrow red ravine. Apart
from the narrow path leading east, rocky hillsides tower up on every side. On
the south side is a narrow hole, which perhaps leads into a cave. "
west = redDesert
south = redCave
in asExit (south)

’

+ Enterable ->redCave 'narrow (south) hole/cave/rockface' 'narrow hole'
"The narrow hole in the south rockface looks just big enough to squeeze through. "

’

redCave : DarkRoom 'Red Cave' 'the red cave'

"There is just enough room to stand in this small cave; the dark, rough red
walls press in on every side, and the roof rapidly dips to meet the floor
at the rear. The only way out is through a narrow exit to the north. "
north = redRavine
out asExit (north)

’

plasticTablet : Tablet 'plastic tablet*tablets' 'plastic tablet' @redCave

inscription = "S M I L E\nP I PE R\nR O X L N\nANT L E\nT RU S 3"
weight = 1
initSpecialDesc = "A plastic tablet lies on the floor towards the rear of the cave. "

’

There's still one more task we need to perform before recompiling the game and trying all this out. The way we have
defined tardisDestinations.destination means that it could return nil, especially if a lot of dynamic destinations have
been created already. This in turn means that pressing the big red button could end up sending the Tardis into nil (via
the tardis.movelnto(dest) statement in tardisButton.actionDobjFor(Press)). This in itself is not too problematic - unless
the player tries to leave the Tardis while it's in nil, which he or she could very well try to do. This does need to be
prevented, since once the player character is moved into nil, there is nothing the player character can do to get out it,
other than type UNDO, which is a bit mimesis-breaking. What we need to do is to prevent the player leaving the Tardis
if it's in nil, providing a convincing (or at least reasonably plausible) reason for doing so. This is quite easy to do, since
leaving the Tardis requires travel via a Door, and a Door is a type of TravelConnector, and we can simply override its
canTravelerPass and explainTravelBarrier methods to disallow travel when the Tardis is in nil and explain why we're
doing so:

+ tardisDoorInside : Lockable, Door ->tardisDoor 'outer white door*doors' 'white door'
canTravelerPass (traveler) { return tardis.location != nil; }
explainTravelBarrier (traveler)
{ "You can't go out: the Tardis hasn't materialized properly and there's nothing
out there but the grey limbo, where nothing can exist. "; }

Now at last you should be in a position to recompile the game and take your Tardis for a spin.

9.8. Lever

A Lever is a Thing that has two states, pulled and pushed, represented by its isPulled property being either true or nil
respectively. The Lever class adds specialized handling for the PUSH, PULL and MOVED commands. A PULL
command is considered illogical for a Lever whose isPulled is true, and a PUSH command illogical if it is nil (once a
lever has been pulled it's in its pulled position and can't be pulled again until it's been pushed back to its starting
position). If a PULL or PUSH command passes the verification stage, the action method calls makePulled(true) or
makePulled(nil) accordingly. By default this simply sets the isPulled property to the value of the parameter passed to

Page 123

TADS 3 Tour Guide

the makePulled method, but it can be overridden to do far more interesting things, as we shall shortly see. A MOVE
command is effectively translated into a PUSH or PULL command, depending on the current state of the Lever (PUSH
if isPulled is true, PULL otherwise).

There may obviously be cases where you want something that is quite obviously and explicitly a lever, and the Lever
class clearly simplifies the definition of such objects. In general, all you need do is override makePulled(pulled) to
define the particular effects of pulling or pushing the lever and then call inherited(pulled) for the default handling. Since
a lever is so obviously something that should be pushed or pulled, however, here we'll make at least some attempt to
disguise it. We'll make it an apparently decorative feature on a stone altar in the temple (in case you're wondering
"What temple?", we'll be defining it shortly). When the lever (thinly disguised as a banana-shaped projection from the
north side of the altar) is pulled, a secret panel behind the altar slides open; when it is pushed the panel slides shut
again. The complication is that the banana-shaped lever won't budge at all unless the weight of objects placed on the
altar comes to exactly fifty-four pounds (information the player can discover by deciphering all those tablets we keep
scattering about the place). This is how we'll do it:

stoneAltar : Fixture, Surface 'stone altar' 'stone altar' (@temple
"The altar comprises a massive stone slab, carefully carved and dressed into a
smooth surface, apart from a curious banana-shaped projection at one end. "
weight = 0

’

+ Lever, Component 'banana-shaped banana shaped projection' 'banana-shaped projection’
"Protruding from the north side of the altar, the banana-shaped projection is
its only decorative feature. "
makePulled (pulled)
{
if (stoneAltar.getWeight != 54)
{
reportFailure ('It won\'t budge. ');
exit;
}
else if (pulled)
"With a loud grating sound, the wall behind the altar grinds open. ";
else
"When you push the lever, the wall behind the altar grinds shut. ";
inherited(pulled);
templeWestWall.makeOpen (pulled) ;
}
weight = 0

Perhaps the only real subtlety here is making the weight of both the altar and the projection zero. The reason for doing
this is that both weights (by default each 1) are included in the calculation of stoneAltar.getWeight, which we are using
to check the weight of items placed on the altar. We could have compensated for this by adding 2 to the weight we
were checking for, but doing it the way we've done it is almost certainly less confusing and less error-prone.

With a bit more tweaking in the makePulled method, the Lever class can be used for something even less obviously
less like a lever. In a nearby location we'll put a gold statue standing on a gold plinth. If the statue is pushed it topples
over revealing a cavity in the plinth, which cavity contains yet another tablet: appropriately, the golden one. Here's how
we can implement the statue as a Lever:

goldenGrotto : DarkRoom 'Golden Grotto' 'the golden grotto'

"The walls of this grotto glitter with gold dust embedded among the rock, but
if there was any gold of any consequence here, it has long since been removed,
apart from "

southeast = westShore

out asExit (southeast)

+ statue : Lever, Fixture 'gold statue' 'gold statue'
"The gold statue depicts a solemn, regal figure of noble bearing wearing a
golden crown. The figure's right hand looks as if it is clutching something

that is no longer there. <<isPulled ? nil : 'The statue has been toppled off
its base and is lying on the ground.'>> "
inRoomDesc = "a golden statue <<isPulled ? 'standing proudly on a golden plinth'

'lying on the ground'>>. "
makePulled (pulled)
{
if (pulled)
{
Page 124

TADS 3 Tour Guide
"You aren\'t strong enough to pull the statue back upright. ";
exit;
}
else
{
"The statue topples over, revealing a cavity in the plinth beneath. ";
plinth.initializeVocabWith('cavity"');
}
inherited(pulled);
}

isPulled = true

+ plinth : Container, Fixture 'plinth' 'plinth'

"The plinth is a <<isOpen ? 'hollow' : 'solid'>> block of gold inscribed with the
words <g>King Benedict the Banana-Bearer</g>. "
isOpen = (!statue.isPulled)

’

++ goldTablet : Tablet 'gold tablet*tablets' 'gold tablet'

inscription = "T F Q Z PA\nN W O B E\nA U O U A\nF L O U R\nS T O P 3"
weight = 32
feelDesc = "It feels mighty heavy! "

;
Decoration 'cavity' 'cavity';

In case you're wondering, the purpose of the seemingly pointless and actually locationless Decoration object at the
end is to ensure that 'cavity' is a word the game recognizes even before the statue is pushed over, in case the player
tries to refer to the cavity before the statue is TOPPLED; in such a case 'You see no cavity here' is a more appropriate
response than "The word "cavity" is not necessary in this story' (since the word "cavity" will be added to the dictionary
words refering to the plinth once the statue is toppled).

We'll give yet another example of a lever when we're ready for it. To tidy up this part of the game, we need to create
the temple and the connections between various locations. To start with we'll create the routes to the grotto and the
temple from the shore of the lake:

westShore : Room 'Sandy Beach' 'the sandy beach'
"For an underground lake this section of shore forms a surprisingly large beach. The
lake laps the shore to the east, while a pair of paths lead up from the beach to the
cave complex beyond, one to the northwest and the other to the southwest. "
southwest = graveyard
northwest = goldenGrotto

’

graveyard : DarkRoom 'Graveyard' 'the graveyard'
"There is something decidedly eerie about this underground graveyard with its
musty old tombstones. This is truly a place of death; nothing
lives here, for this place never sees the sun; a dusty path leads off to the
northeast and a strange, stone temple is situated just to the west. "
northeast = westShore
west = temple

+ Fixture 'musty old tomb/tombs/tombstones/tombstone' 'tombstones'
"One in particular catches your eye, perhaps because of its curious inscription:
\b0 1 + + +\n8 R 2 + +\n+ 7 D 3 +\n
+ 4+ 6 E 4\n+ + + 5 R\b"
isPlural = true

+ Enterable -> temple 'strange stone temple/door/lintel' 'temple'
"It's a curious structure, seemingly carved out of the solid rock in an approximation
to a gothic design. An inscription on the door lintel suggests that the temple is
dedicated <g>to the unknown god</g>. "

There's nothing new in any of this. Of some interest, however, is the description of the tombstones, since this provides
the key to deciphering the tablets (how this works should be rather more obvious when you see the description
displayed). Next we need to define the interior of the temple:

Page 125

TADS 3 Tour Guide

temple : DarkRoom 'Inside the Temple' 'the temple'
"This gloomy temple looks like something out a gothic horror movie. The long, bare
nave 1is populated only by a series of grim stone columns festooned with cobwebs.
A large stone altar stands at the west end, "
out = graveyard
east asExit (out)
roomParts = static inherited - defaultWestWall
west = templeWestWall

+ CustomFixture 'grim (stone) column/columns' 'columns'

"Four pairs of the stone column flank the central aisle, each column a
grotesque, twisted shape, mocking the overall classical arrangement. "
isPlural = true
cannotTakeMsg = 'Moving these columns might be a seriously bad idea,
since they appear to be holding up the roof; fortunately there\'s

not the remotest prospect of your being able to shift any of them

by so much as a nanocubit. '

+ Decoration 'cobwebs/webs/web/cobweb' 'cobwebs'
"Multiple cobwebs festoon the space around the tops of the columns and
the ceiling, but the spiders responsible have long since departed. "
isPlural = true

+ templeWestWall : SecretDoor, defaultWestWall
desc ()
{
if (isOpen)
"Most of the wall behind the altar has moved aside, leaving an aperture into
a chamber beyond. ";
else
"The wall behind the altar is carved with strange patterns. ";

}

destination = templeChamber

inRoomDesc = "behind which is a <<isOpen ? 'large open aperture in the
wall' : 'stone wall carved with strange, abstract symbols'>>. "

++ Component 'strange abstract patterns/symbols/squares' 'symbols'
"Some of them could almost be bananas, but most are spirals and squares. Several
of the squares are subdivided into twenty-five smaller squares. "
isPlural = true

The main thing to note here is how we handle the west wall of the temple. We remove the defaultWestWall from the
temple's roomParts, but on this occasion we don't add our customized west wall back in. The main reason for this is
because it makes use of our custom inRoomDesc property to add a description of itself to the room description, and
for this to work it must be defined as in the temple's contents, not its roomParts. Finally, we need to define the secret
chamber that's revealed when the west wall is opened:

templeChamber : DarkRoom 'Small Square Chamber' 'the small square chamber'
"The most noticeable feature of this otherwise featureless chamber is the
way out to the east. "
out = temple
east asExit (out)

That completes what is necessary for you to be able to compile and test the game once more. To try out the altar
puzzle, you'll need to put the gold, stone and brass tablets there plus either an item weighing 2 or two items each
weighing 1 (e.g. the torch and the brass key). You are, of course, entirely welcome to use the scales in the galley to
try to find some other combination of objects coming to 54 pounds weight in total!

Of course, you may find it a bit tedious to go through the process of having to collect the right objects to put on the
altar if you need to get into the small chamber beyond during the process of game development and testing (as you
shortly will), so perhaps the time has come to define another magical debugging command. We'll call this one FORCE
OPEN or FOPEN for short; if you FOPEN anything that's openabile, it'll open up straight away, bypassing any locks or
other inconvenient impediments:

Page 126

TADS 3 Tour Guide

DefineTAction (ForceOpen)

’

VerbRule (ForceOpen)

('"force' singleDobj 'open') | ('force' 'open' singleDobj)
| ('fopen' singleDobj)

:ForceOpenAction

verbPhrase = 'force/forcing (what) open'

’

modify Thing
verifyDobjForceOpen { illogical ('{The dobj/he} {isln\'t openable. '); }

’

modify BasicOpenable
dobjFor (ForceOpen)
{
verify () { 1f(isOpen) illogicalNow('{The dobj/he} {is} already open. '); }
action ()
{
isLocked = nil;
isOpen = true;
"With a loud bang, {the dobj/he} flies open. ";
}
}

’

Don't forget to put code like this between #ifdef DEBUG and #endif, so it doesn't end up in the released version of
your game.

9.9. Dial

The Dial class is an immediate descendant of the Settable class and the immediate ancestor of the NumberedDial and
LabeledDial classes. As such, it is not likely to be used much in game code, since if something is a dial at all, it is
likely to be either numbered or labeled if it is to be at all useful, and if one wants something more general that a
NumberedDial or a LabeledDial the chances are it'll be a Settable, like the slider we implemented before.

There may be one or two niches Dial can fill in game code, however. The most obvious might be a Dial with case-
sensitive labels (since the LabeledDial assumes that its labels are not case sensitive). Although there may not be
much call for case-sensitive labels, it could be possible to construct a minor puzzle of sorts out of a Dial with such
labels, and it's probably easier (or at least, no harder) to do so starting from the Dial class than the LabeledDial class.
Basically, all one need do to make it work is to define one's own validSettings list and override the isValidSettings
method on such a dial thus:

isValidSetting(val) { return validSettings.indexOf (val) != nil; }

To show how this might work in practice, we'll add one of these in the secret chamber behind the stone altar, which
we'll transmogrify into a lift in the process. The dial will be the lift control, which can be turned to thinly-disguised
versions of the words UP and DOWN; no other setting has any effect. If the handle is turned to DOWN (disguised as
Dupe OWN) the lift descends (unless it's already at the bottom). If it's turned to UP (disguised as dUPe own) the lift
ascends again (unless it's already at the top):

templeChamber : DarkRoom 'Small Square Chamber' 'the small square chamber'
"The most noticeable feature of this otherwise featureless chamber is the
way out to the east, "
out = temple
east = (out)
moveInto (newDest)

{

if (out == newDest)
"and nothing happens. ";
else

"and with a shudder, the small chamber <<newDest==temple ? 'ascends'
'descends'>> a long shaft, and finally comes to a halt. ";
out = newDest;

Page 127

TADS 3 Tour Guide

+ Dial, Fixture 'curious (wall) dial/handle' 'dial'
"The dial comprises a handle set into the stone work that can be turned to
point to any of the eight phrases carved round its circumference: <<listSettings>>
It currently points to <i><<curSetting>></i>. "

inRoomDesc = "but there is also a curious dial set into one wall. "
disambigName = 'curious wall dial'

curSetting = 'DUPE OWN'

listSettings ()

{

stringlLister.showlList (validSettings) ;

}

validSettings = ['dupe own', 'dupE own', 'dUPe own', 'DUPe own',
'Dupe OWN', 'DUPE oWn', 'DUPE oWN', 'DUPE OWN']
isValidSetting(val) { return validSettings.indexOf (val) != nil; }

makeSetting(val)
{
if (val == curSetting)

{

"The dial already points to <i><<val>></i>. ";
return;

}

"You turn the dial to <i><<val>></i>, ";

switch (val)

{
case 'dUPe own': templeChamber.movelInto (temple); break;
case 'Dupe OWN': templeChamber.movelnto (templeCellar); break;
default: "but nothing happens. ";

}

inherited (val) ;

Note that we have to change the definition of templeChamber.east, since the asExit macro won't do what we want if it
refers to a directional property we subsequently change. Note also that we have overridden templeChamber.movelnto
to something quite different from what movelnto normally does; we could have used any method name we liked for
this, but movelnto is quite descriptive here, and we have no use for the standard Thing.movelnto handling here, so we
might as well replace it. Finally, note that we define a listSettings method to avoid (the tedious and possibly error-
prone process of) writing out the possible settings of the dial twice. This calls the convenient stringLister.showList()
method to format the list in the form "a, b, ¢ and d". Unfortunately neither the stringLister nor its showList method
exists in the TADS 3 library, so we'll need to define them for ourselves:

stringlLister : object
showList (1st)
{
local 1lstlLen = lst.length;
for (local i=1; i<= lstLen; 1i++)

{

if (i not in (1, 1lstLen)) ",";

if (i == lstLen && lstLen > 1) " and";
if(i>1) " ";

say (lst[i]);

If you don't mind, or actually prefer, a comma after the penultimate item, you could probably simplify this a little.

Finally, we need to define the location the list/chamber arrives at if the dial is turned to the Dupe OWN position. As an
attempt at brevity we might write:

templeCellar : DarkRoom 'Cellar beneath Temple' 'the cellar beneath the Temple'
"This long, damp cellar probably hasn't been visited in years. "
1lift = templeChamber
west = (lift.out == self ? 1lift : nil)

The west property shows a possible but not very sanitary method of checking that the lift is in place before allowing
entry to it. It works after a fashion, but will cause an immediate runtime error if you then added, for example:

Page 128

TADS 3 Tour Guide

in asExit (west)

Although we probably won't be implementing any other way into the temple cellar than via the lift, so the lift will always
be available to the west when the player character is in the cellar, if we want to make this kind of test at all, it would be

far better to use the recommended method we have already seen (using a nested TravelConnector), even though it is
a bit more long-winded:

templeCellar : DarkRoom 'Cellar beneath Temple' 'the cellar beneath the Temple'
"This long, damp cellar probably hasn't been visited in years. "
lift = templeChamber
west: OneWayRoomConnector
{
destination = (lexicalParent.lift)
canTravelerPass (traveler)
{
return lexicalParent.lift.out == lexicalParent;
}
explainTravelBarrier (traveler)
{
"There's nothing that way but an empty shaft. ";
}

’

The above definition could be made a bit less verbose if we dispensed with the lift property and replaced each
instance of lexicalParent.lift with templeChamber.

9.10. OnOffControl

An OnOffControl is an immediate descendent of Thing that responds to TURN ON and TURN OFF commands. It has
an isOn property which keeps track of whether it is on (isOn = true) or off (isOn = nil), and a makeOn(val) method
that simply sets ison to val, but which can be overridden to incorporate the side-effects of turning the control on or off.

To complete our tour of gadgets and controls we'll return to the space station that we left in the most minimally-defined
state. We'll use an OnOffControl to open the only door out of the room in which the Tardis materializes, at the same
time filling in a few more details of the location:

spaceStation : Room 'Space Station - Observation Deck' 'the observation deck'
"Judging by the huge observation window, this station is orbiting a huge
blood-red planet. On the bulkhead is an electronic calendar, and underneath
the calendar is a small green switch. "
in = ssDoorl

+ OnOffControl, Fixture 'small green switch/maglock' 'small green switch'
"The switch is labelled MAGLOCK. "
makeOn (val)
{
ssDoorl.makeLocked (val) ;
inherited (val) ;

}

isOn = true
+ ssDoorl : IndirectLockable, Door 'steel door' 'steel door'
inRoomDesc = "Next to both is a sliding steel door, which is currently <<isOpen ?
'open' : 'closed'>>. "

makeLocked (stat)
{
if (isLocked != isOpen)
{
"The door slides <<stat ? 'shut' : 'open'>>. ";
makeOpen (!stat) ;
}

inherited(stat);

Page 129

TADS 3 Tour Guide

+ Fixture 'electronic calendar' 'electronic calendar'

"According to the calendar the date is <<getDate>> "

getDate ()

{
local gt = getTime();
local date;
date = toString(gt[3]) + '-'+ monthName (gt[2]) + '-' + toString(gt[l] + 1100);
return date;

’

function monthName (x)

{
return ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] [x];
}

The important code here is first of all in the makeOn method of the OnOffControl, which calls the makeLocked method
of the door, and then in the makeLocked method of the door, which makes unlocking the door open it and locking it
close it again. The electronic calendar is largely decorative, but it does serve to show the player that the Tardis has
traveled well into the future. The getDate() routine makes the calendar display a date exactly 1100 years in the future
from whatever the current (real world) date happens to be, and in a format that will be understood the same way on
both sides of the Atlantic.

9.11. Switch

Switch is a simple extension of the generic OnOffControl that can be used with a SWITCH command without
specifying ON or OFF, and treats FLIP synonymously. SWITCH X or FLIP X thus turns X on if it was off and vice
versa.

We'll use a Switch in the second room of the space station as the apparent (but only apparent) duplicate of the
OnOffControl we used in the first. When the player confidently tries to turn it off in the expectation of opening another
door, however, s/he'll find it doesn't quite work as expected:

ssLivingQuarters : Room 'Space Station - Living Quarters'
"These living quarters look totally abandoned; it doesn't look as if anyone has
been here for years. A table is bolted to the centre of the floor.
An open doorway leads through one bulkhead, while a closed sliding door is
set in the opposite one. "
out = ssDoorway

+ ssDoorway : ThroughPassage -> ssDoorl 'open doorway' 'open doorway'
"The open doorway leads back to the observation deck. "

+ ssTable: Fixture, Surface 'table' 'table'
"It's a plain steel table, bolted to the floor. "

+ ssDoor2 : IndirectLockable, Door 'door' 'door'
"The door is a solid sheet of steel. It looks like it's meant to slide open.
Next to the door is a small green switch. "

+ Switch, Fixture 'small green switch/maglock' 'small green switch'
"The switch is labelled MAGLOCK. "
makeOn (val)
{
if (!touched)
{
mercury.makePresent;
touched = true;
"The switch spits and fizzles, and then starts oozing a silvery liquid
which gathers in a small pool on the floor. ";
}

inherited(val);

Page 130

TADS 3 Tour Guide
isOn = true
touched = nil

’

+ mercury : Presentlater, RestrictedContainer 'silver silvery liquid/mercury/pool’
'silvery liquid'
"It's a dense, silver-coloured liquid. "
dobjFor (Take)
{

action ()
{
"{You/he} can't pick it up, it simply runs between {your} fingers. ";
}
}
validContents = [syringe]
specialDesc = "A small pool of silvery liquid lies on the floor near the door. "

’

If you recall far enough back, when we first introduced the fluid link we hinted that it would need refilling with mercury -
this is how the player will come by it. The validContents property of the mercury also hints how the mercury is to be
collected. We'll see to all that next.

As a second example of a switch we'll add a switch to the Tardis control panel to open and close the door (the
description of the control panel mentions a switch, but we've yet to implement it). The following object should be
located shortly after the definition of tardisConsole so that it's located in the console:

+ tardisSwitch : Switch, Component '(tardis) bright green switch' 'green switch'
"It's bright green. "
makeOn (val)
{
"As {you/he} flip{s} the switch the outer door <<val ? 'opens' : 'closes'>>. ";
tardisDoorInside.makeOpen (val) ;
}
dobjFor (Push) asDobjFor (Switch)
isOn = (tardisDoorInside.isOpen)

’

There's a couple of things to note here. First, we define dobjFor(Push) asDobjFor(Switch) so that PRESS SWITCH or
PUSH GREEN SWITCH works the same as FLIP SWITCH or SWITCH SWITCH, namely turning the switch on if its off
and vice versa. Secondly, instead of having the switch's makeOn method change the value of its isOn property, we
have it call the Tardis door's makeOpen method to open or close the door (and display a suitable message). We then
define the isOn property to reflect the door's isOpen property so the two stay in sync automatically.

9.12. Lever (2)

In order to collect the mercury that spits from the second switch in the space station and insert it into the fluid link, the
player will need to use the syringe found in the first-aid kit. To fill and empty the syringe requires pulling and pushing
its plunger, which makes its plunger a good candidate to be yet another Lever. To do this we need to make substantial
changes to the syringe object and then add the plunger as a component:

++ syringe: Thing 'syringe/needle' 'syringe'
"The syringe is a long plastic tube with a needle at one end and a plunger at the
other. It is <<fluid==nil ? 'empty' : 'full of '+ fluid.name>>. "

fill (liquid)
{
fluid = liquid;
}
fluid = nil

’

+++ plunger : Lever, Component 'plunger/knob' 'plunger'
"It's a small piece of white plastic with a round knob. "
makePulled (pulled)
{
if (pulled && syringe.isIn(mercury))

{

syringe.fill (mercury) ;

Page 131

TADS 3 Tour Guide
"The plunger pulls the silvery liquid into the syringe. ";
syringe.movelnto (gActor) ;
}
if(!'pulled && syringe.fluid != nil)
{

"A jet of <<syringe.fluid.name>> spurts from the needle";

if(syringe.isIn(tinyHole) && syringe.fluid == mercury)
{

", filling the fluid 1link";

fluidLink.full = true;
}

" "w.
. ’

syringe.fill (nil);
}
inherited(pulled);

’

Although the syringe is only meant to be filled with mercury, we allow for the possibility of handling other fluids by
giving it a fluid property to describe what particular fluid, if any, it contains. Most of the complicated handling goes in
the makePulled method of the plunger object, which we add as a component of the syringe. Here, we check to ensure
that mercury is indeed what the syringe contains, if indeed it contains anything, but only really add handling for that
case. In default of adding handling for a FillWith command (which we'll leave as an exercise for the reader) we make
the player first PUT SYRINGE (or NEEDLE) IN MERCURY and then PULL PLUNGER to fill the syringe, but just to
make things a bit easier for the player we make the handling of PULL PLUNGER move the syringe back into the
player's grasp (since PUT NEEDLE IN MERCURY will have effectively dropped it from the player's grasp, and this
may not be immediately obvious to the player, who could all too easily walk off after filling the syringe without realizing
that it was being left behind).

It will be apparent from syringe.makePulled that in order to fill the fluid link from the syringe we need first to insert the
syringe in some tiny hole. This will be a hole at one end of the fluid link, a hole only accessible, or visible, when the
link is removed from its compartment. At the same time, we have to ensure that the player cannot replace the link in
its compartment while the syringe is still sticking out of the hole, so we need to amend both the compartment and the
link, as well as adding a tinyHole object:

+ tardisPanelCompartment : Presentlater, RestrictedContainer, Fixture 'shallow compartment'
'shallow compartment' "It's about four inches deep. "
validContents = [fluidLink]
plKey = 'tardis'

notifyInsert(obj, newContainer)

{

if (newContainer == self && syringe.isIn(tinyHole))

{
"You can't insert <<obj.theName>> into <<theName>> while the syringe is
sticking out of it. ";
exit;

’

++ fluidLink : Thing 'fluid link' 'fluid link'

"It's a long transparent tube, <<full ? 'full of mercury' : 'with just a bit of
mercury in it'>>. Both ends are capped with some kind of shiny
metal<<isIn(tardisPanelCompartment) ? nil : ', and at one end is a tiny hole'>>. "
full = nil

iobjFor (PutIn) maybeRemapTo (tinyHole.sightPresence, PutIn, DirectObject, tinyHole)

’

+++ tinyHole : Component, RestrictedContainer 'tiny hole' 'tiny hole'
"The tiny hole in the end cap of the fluid link is protected by some kind of membrane
to prevent the contents escaping. "
validContents = [syringe]
sightPresence = (!fluidLink.isIn(tardisPanelCompartment))

’

The overridden tardisPanelComponent.notifylnsert method does the job of preventing an attempt to return the fluid link
to its compartment with the syringe still sticking in it. We change the description of the fluid link so it describes whether
it is full or not and mentions the hole at its end provided the hole is visible, and we change the full property to be nil to

Page 132

TADS 3 Tour Guide

start with. It is possible that the player may try to PUT SYRINGE IN FLUID LINK instead of PUT SYRINGE IN HOLE,
and we allow this by remapping the former command to the latter provided the hole is visible. We do this with the
maybeRemapTo macro, which carries out the remapping only if its first argument evaluates to true. Finally, we make
the tinyHole visible or not by overriding its sightPresence property to be true if and only if the link is out of its
compartment. In a case like this (where we want something descended from NonPortable to appear and disappear),
this is probably the easiest and most efficient way of achieving the effect.

If you now recompile and test the game, you should not only be able to refill the fluid link, but you should find that until
you do so, setting the slider on the Tardis control console to different values has no effect on the Tardis's destination.
Since filling the fluid link is a bit of a rigmarole to go through when testing, you might want to add the following
cheating short cut (for testing purpose) in your debug code (between #ifdef _ DEBUG and #endif):

DefineIAction (FillFluidLink)
execAction
{
fluidLink.full = true;
"Well, even if the fluid link wasn't full before, it sure is now! ";

}

’

VerbRule (FillFluidLink)

('£i11" 'fluid' 'link') | 'f£f1'
: FillFluidLinkAction
verbPhrase = 'fill/filling the fluid link'

9.13. A Card Lock

We'll finish off the space station section by adding another lockable compartment, but this time one that uses a card
key to open it. First we'll leave the card key lying around to be picked up - but we'll also damage it:

class CardKey : Key;
cardKey : CardKey 'white plastic card' 'white plastic card' @spaceStation

"It's a piece of white plastic, about 80 x 30mm, with some blue letters
printed on it that are now too indistinct to read. <<isBent ? 'Unfortunately,

it also looks a bit bent. ' : nil>>"
initSpecialDesc = "On the floor lies a white plastic card. "
isBent = true

’

Now in the other accessible half of the space station we'll place the cabinet this key's designed to unlock, and put yet
another of our tablets inside it. We'll make it a LockableWithKey, defining the cardKey as the key, but since the player
may also try to insert the card, we'll remap a Putln command to the appropriate UnlockWith command (so that PUT
CARD IN SLOT is treated as UNLOCK CABINET WITH CARD):

ssCabinet : KeyedContainer, Fixture 'small cabinet/slot' 'small cabinet' @ssLivingQuarters
"The front of the cabinet is flush with the bulkhead and contains a small slot. "
inRoomDesc = "A small metal cabinet is set into another of the bulkheads. "
keyList = [cardKey]
keyIsPlausible (key) { return key.ofKind(CardKey); }
initiallyLocked = true
lockOrUnlockAction (lock)
{
if (gIobj.isBent)
{
reportFailure (' {The iobj/he} won\'t fit in the slot. ');
exit;
}
inherited (lock) ;
}
iobjFor (PutIn) remapTo (UnlockWith, self, DirectObject)

Page 133

TADS 3 Tour Guide

+ silverTablet : Tablet 'silver tablet' 'silver tablet'
inscription = "F RANZK\nE I I O I\nO TV N I\nFLEET\nF ORH 3"
weight = 8

’

Note that we have introduced a new (to the reader) method of KeyedContainer (and other LockableWithKey objects),
namely keylsPlausible. This should return true if and only if a key might plausibly fit the lock; in this case the card key
might but a conventional key obviously wouldn't. Only if keylsPlausible(key) returns true for a certain key will that key
be tried in an implicit action. The keyList property narrows down the list of keys that will actually operate the lock to the
card key alone, but we override lockOrUnlockAction to prevent even this key from working if it is bent.

At this point we had best move our autoRectifier into its proper, futuristic, initial setting, so that the player has an
immediate means of repairing the bent card key:

autoRectifier : ComplexContainer 'silver cylinder' 'silver cylinder' @ssTable
"It's about a foot high and five inches in diameter. A black ring surrounds
the opening at one end. The only other feature of interest are a conspicuous
orange button and the manufacturer's name inscribed just below the ring. "
subContainer : ComplexComponent, SingleContainer { bulkCapacity = 3 }
bulk = 4
weight = 3

’

If you move this definition in your source code, remember to move the component object definitions (the black ring,
manufacturer's name, and orange button) with it. It probably won't take the player long to figure out that the
autorectifier solves the problem of the bent card key, but this is then a reasonable clue that it might do the same for
the bent brass key found elsewhere.

The introduction of the card key leaves us with one or two pieces of tidying up to do. First of all, a card key is not the
sort of thing that should be added to our keyring, so we need to override its isMyKey method as envisaged when we
first encountered the Keyring class:

Keyring 'silver (key) keyring/ring' 'silver keyring' Q@firstAidKit
desc() { }
descContentsLister = (examinelister)
isMyKey (key)
{
return key.ofKind (Key) && !key.ofKind(CardKey) ;

}

’

Finally, we have a couple of lockable objects (the trunk and the Tardis door) for which the card key is quite obviously
not the right kind of key. Rather than deal with them individually, it's easier simply to override keylsPlausible on the
class:

modify LockableWithKey
keyIsPlausible (key) { return key.ofKind(Key) && !key.ofKind(CardKey) ; }

’

Since the ssCabinet object overrides this method in its own way, it won't be affected by this change.

Page 134

TADS 3 Tour Guide

10. Fuses & Daemons

10.1. Fuse

A Fuse is probably the simplest kind of Event to create. It simply fires an event after a certain number of turns. To set
up a fuse you use a statement of the form

new Fuse(obj, &prop, turns);

Which means that after turns turns the method obj.prop will be executed (the prop method of the obj object), and then
the fuse will be removed from the list of pending events. And that's basically it. You should note, of course, that in the
argument list of the new Fuse call, the second argument is a property pointer, hence you need to use the sprop
syntax. It's also helpful to know that if turns = 0 the method will fire on the current turn, if it's 1 (one) it'll fire on the next
turn and so on. And it may be worth while bearing in mind that the statement new Fuse () returns a pointer to the new
fuse object created, so that if you want to refer to it subsequently, it's useful to use a statement like:

fuseID = new Fuse(obj, &prop, turns);

This makes it convenient to terminate the fuse prematurely, if for any reason you need to. To remove the fuse defined
above from the list of pending events you would call:

fuseID.removeEvent;

This would not fire obj.prop prematurely, it would simply abort the fuse. If we had not used a fuselD property to store a
pointer to the fuse, we could still abort it by calling:

eventManager.removeMatchingEvents (obj, &prop);

Where obj and &prop are the object and property pointer used in creating the fuse. This method returns true if any
events (Daemons or Fuses) were found matching the specification and nil if not. It is thus not absolutely essential to
store a pointer to the fuse if you may want to abort it, but it is probably more convenient. It can also be useful for
keeping track of whether a fuse is active or not.

For our first example we'll return to the stick of dynamite we created earlier (something which quite literally has a fuse)
and implement it with a fuse. It's still worth using the Candle class to implement the stick of dynamite, since the
Candle implements a lot of handling (not least of the BURN WITH and EXTINGUISH commands) that's useful to us.
Indeed, much of the original definition can stand, all we need to do is to override the isLit method to set up a Fuse
(instead of the SenseDaemon the standard Candle employs); the changes are shown in bold:

dynamite : Candle 'stick dynamite/fuse' 'stick of dynamite'
"It's a white cylinder with a short fuse. <<isLit ?
'The fuse is lit and burning down fast. ' : nil >>"

fuellevel = 3
brightnessOn = 1
sayBurnedOut ()
{
if (isHeldBy (gPlayerChar))
{

"The dynamite explodes with a mighty bang and blows your hand off. But
since you're killed by the blast you probably won't be needing it
any more.\b";
endGame (ftDeath) ;

}
if (canBeTouchedBy (gPlayerChar))
{

"The dynamite denonates close by, but you are killed by the blast almost
before you hear the bang. ";
endGame (ftDeath) ;

}
if (isIn(boulder))
{

boulderFragments.movelInto (boulder.location);

boulder.movelInto (nil) ;

}
Page 135

TADS 3 Tour Guide
"You hear a muffled explosion nearby. ";
movelInto (nil);

}

makeLit (1lit)
{
isLit = 1it
if(1it)
fuseID = new Fuse (self, &sayBurnedOut, 3);
else if (fuselD)
{

fuseID.removeEvent () ;
fuselID = nil;

}

The one slight oddity about this revised stick of dynamite is that however many times it extinguished and relit (before it
actually detonates) its fuse always remains the same length - but perhaps in the context of the game that's just as well
(the player always has three turns to get out of the way after lighting the fuse).

For our second example we'll create a Fuse and a Daemon on the same object, though for the moment we'll
concentrate our attention on the Fuse. A solid gold tablet, such as we've placed in the plinth of the statue, would be
pretty heavy to carry around, and indeed it's the heaviest portable object (as defined by its weight propery) that we've
defined in the game. Rather than create an old-fashioned inventory puzzle by limiting the total amount of weight the
player character can carry (so that, for example, the player character would have to drop everything else in order to
carry the gold tablet, and arrange to distribute light sources along its path, which would all be pretty tedious) we'll limit
the number of turns the player can carry the gold tablet before putting it down to take a rest. We'll use a Daemon to
limit how long the player character can carry the gold tablet for, and a Fuse to simulate his or her recovery. We'll add a
carried property to goldTablet which will hold the number of turns for which the tablet has been carried. Once this
reaches 3 the player character becomes too tired and is forced to drop the tablet. At this point we set a fuse that is
fired after three turns (provided the player leaves the gold tablet alone in the interim); when the fuse fires three turns
later, it simply resets goldTablet.carried back to zero (which would allow the player character to pick up the gold tablet
and carry it for another three turns).

In order to give the context, the following code shows the full redefinition of the goldTablet, but for now we'll
concentrate only on explaining that for the fuse:

++ goldTablet : Tablet 'gold tablet' 'gold tablet'
inscription = "T F Q 2 P\nN W O B E\nA U O U A\nF L OUR\nSTOZPS"
weight = 32
feelDesc = "It feels mighty heavy! "
carried = 0
afterAction ()
{
if (daemonID == nil && isIn(gPlayerChar))
{
endFuse;
daemonID = new Daemon (self, &daemon, 1);
}
else if (daemonID !'= nil && !'isIn(gPlayerChar))
{
endDaemon;
fuseID = new Fuse(self, &fuse, 3);
}
}
daemonID = nil
daemon
{
local carrier = self;
while (!carrier.isDirectlyIn(gPlayerChar))
carrier = carrier.location;
gMessageParams (carrier) ;
switch (carried++)
{
case 0: break;
case 1: "{The carrier/he} {is} starting to feel very heavy. "; break;
case 2: break;

Page 136

TADS 3 Tour Guide
case 3: "You can't carry {the carrier/him} much further. "; break;
default: "You're forced to put {the carrier/him} down;

it's too heavy for you. ";
nestedAction (Drop, carrier);
}
}

endDaemon

{
if (daemonID != nil)
daemonID.removeEvent;
daemonID = nil;

}

fuse() { carried = 0; fuseID = nil; }
fuselID = nil

endFuse

{
if (fuselID !'= nil)
fuselD.removeEvent;
fuselID = nil;

}

’

There's nothing magical about the names fuse, fuseID and endFuse we've given various methods and properties, we
could have called them tom, dick and harry, it's just that the names we've given are a lot more meaningful. The
afterAction () method tests whether anything has happened to change whether the gold tablet is still being carried
or not. For reasons we'll explain more fully when we come to the daemon, the first if statement in this method tests for
the tablet being picked up, and the second for its being dropped. If it's picked up we want to abort any fuse that's
running (since the player has not rested from trying to carry the tablet that turn) so we abort the fuse with the endruse
method. This is a method we define ourselves; it does two things: first, if fuselD is not nil (i.e. if there is a fuse in
operation) we terminate the fuse by calling fuseID. removeEvent, second we reset fuse1D to nil to keep track of the
fact that there's no longer a live fuse. The test for fuse1D being nil makes it safe to call endruse whether there's
actually a fuse running or not; if fuseID is nil when endFuse is called endruse has no effect.

Whenever the player ceases to carry the gold tablet (either by dropping the tablet itself, or by dropping something that
directly or indirectly contains the tablet) we want to set a new fuse that will allow the player to recover after three turns
(provide s/he doesn't try to pick the tablet up again during that time). We set the new fuse in the statement fuseiD =
new Fuse (self, sfuse, 3) which means that, unless we abort the fuse in the meanwhile, the method self. fuse
(i.e. goldTablet . fuse) will be executed after three turns. Finally, all the fuse () method has to do is to reset carried
to zero and reset fuseID to nil (so we have a convenient method of telling that the fuse is no longer active).

We'll now go on to explore how the Daemon works.

10.2. Daemon

A Daemon is only slightly more complicated than a Fuse, in that while a Fuse fires a one-off event by executing a
method after a set number of turns, a Daemon repeatedly calls a method at fixed intervals (unless or until the Daemon
is terminated).

The syntax for setting up a Daemon is similar to that for creating a Fuse:
new Daemon (obj, &prop, interval);

This sets up a daemon that will call the method obj .prop every interval turns, where interval must be at least 1 (one).
If interval is 1, ob7j .prop will execute each turn, starting with the current turn. If interval is 2, obj.prop will execute
every other turn, starting with the next turn. In general, if interval is n, obj.prop will execute every n turns, starting
in n-1 turns time. Note once again that the second argument to the new Daemon call must be a property (or method)
pointer, hence the &prop syntax.

As with a Fuse it's useful to store a reference to a Daemon when it's created, e.g.:

daemonID = new Daemon (obj, &prop, interval);

Page 137

TADS 3 Tour Guide
This then allows the Daemon to be terminated with the command:

daemonID.removeEvent;

Otherwise to terminate the Daemon you'd need to call:
eventManager.removeMatchingEvents (obj, &prop):;

Now to return to our example. You'll recall that the aim is to limit the number of turns for which the player character
can carry the heavy gold tablet. The Fuse we've already looked at handles the player character's recovery; we'll use a
Daemon to warn the player that the tablet is becoming an unbearable burden and then to enforce its dropping when
the player has exhausted his or her allotment of turns:

++ goldTablet : Tablet 'gold tablet*tablets' 'gold tablet'

inscription = "T F Q Z PA\nN W O B E\nA U O U A\nF L O U R\nS T O P 3"
weight = 32
feelDesc = "It feels mighty heavy! "

carried = 0
afterAction()
{
if (daemonID == nil && isIn(gPlayerChar))
{
endFuse;
daemonID = new Daemon (self, &daemon, 1);

}
else if (daemonID !'= nil && 'isIn(gPlayerChar))

{
endDaemon ;
fuseID = new Fuse(self, &fuse, 3);
}
}

daemonID = nil
daemon
{
local carrier = self;
while (!'carrier.isDirectlyIn(gPlayerChar))
carrier = carrier.location;
gMessageParams (carrier) ;
switch (carried++)

{

case 0: break;

case 1: "{The carrier/he} {is} starting to feel very heavy. "; break;
case 2: break;
case 3: "You can't carry {the carrier/him} much further. "; break;

default: "You're forced to put {the carrier/him} down;

it's too heavy for you. ";
nestedAction (Drop, carrier);
}
}
endDaemon
{
if (daemonID != nil)
daemonID.removeEvent;
daemonID = nil;

}

fuse() { carried = 0; fuseID = nil; }
fuseID = nil
endFuse
{
if (fuseID != nil)

fuseID.removeEvent;
fuseID = nil;

The mechanics of controlling the Daemon are very like those of controlling the Fuse. We set up the Daemon and store
a reference to it in the statement daemonID = new Daemon(self, sdaemon, 1), and we define a convenient method
for terminating the Daemon in endDaemon, which calls daemonID. removeEvent provided daemonlD is not nil, and

then sets daemonlD to nil so we can check that there's no longer a Daemon running (as with the endFuse method we
defined earlier, this definition makes it safe to call endDaemon even if daemonlD is nil and no Daemon is running). As

in the case of the Fuse, there's nothing obligatory about the names daemon, daemonID and endDaemon, we could
Page 138

TADS 3 Tour Guide

have called these properties and methods boston, cambridge and worcester (if we were particularly anxious name
them after cities that are found in both England and Massachussets), but the names we have used make it a bit
clearer what they're for.

The principal complication with what we're trying to do is that the restrictions on carrying the gold tablet should apply
whether the player character is carrying directly, or in some other container such as a sack, or in a container within a
container, such as a box in a sack, and so on. This means we cannot predict what sequence of actions will result the
in tablet's being carried or no longer carried. It might be as simple as TAKE GOLD TABLET, or as long-winded as
PUT GOLD TABLET IN BOX; PUT BOX IN SACK; TAKE SACK; or something even more convoluted. Or again, the
player might TAKE GOLD TABLET and then PUT TABLET IN SACK when the player character (PC) is already
carrying the sack. We need to try to find the simplest way handling all these eventualities.

One thing that helps us here is that the whatsit.isIn (obj) method returns true whether whatsit is directly in obj or is
contained in something that's within obj, however deeply nested. Thus goldTablet.isIn (gPlayerChar) will be true
whether the tablet is directly carried by the player character, or in a sack that the PC is holding, or in a box in a sack
that the PC's carrying, and so on. Likewise goldTablet.isIn (gPlayerChar) will be nil whenever the PC is neither
directly or indirectly carrying the tablet. We can thus use this in goldTablet.afteraAction to check whether the PC is
carrying the gold tablet or not after each turn in which the PC performs an action in the vicinity of the tablet. But we
also need to know whether there's been a change of state, i.e. whether or not the PC was carrying the gold tablet
before, since we don't want to keep spawning new daemons each turn that the gold tablet is carried and new fuses
each time it is not. Fortunately we can check that by seeing whether there's a daemon already running (i.e. daemonlID
is not nil). If the PC is carrying the gold tablet and daemonlID = nil, we need to create a new daemon (and kill any fuse
that's running), because the PC must have started carrying the tablet this turn. Likewise, if daemonlD is not nil and the
PC is not carrying the tablet, s’lhe must have just ceased doing so, so we need to kill the daemon (and start a new
fuse). Because we start a new daemon when the PC starts carrying the gold tablet and kill the daemon when the PC
stops carrying the tablet, we can use the existence or otherwise of the daemon to check whether or not the PC was
carrying the tablet the previous turn. The two checks we need in afterAction are thus if (daemonID == nil s&s&
isIn(gPlayerChar)), to determine thatthe PC has just started carrying the gold tablet, so that we need to start the
daemon and stop the fuse, and if (daemonID != nil && !isIn(gPlayerChar)), to determine that the PC has just
stopped carrying the tablet, so that we need to stop the daemon and start a new fuse running.

The daemon method (called each turn that the PC is carrying the gold tablet) uses a switch statement to display an
appropriate message (or keep quiet), and finally to force the gold tablet to be dropped. The complication here is once
again that the PC may either be carrying the gold tablet directly, in his hands, or in some other container, such as a
box or sack. In the former case the player should be informed that it is the gold tablet that is becoming unbearably
heavy, and eventually forced to drop the tablet; in the latter it would be better if the player were told that the box, sack
or other carrier was becoming difficult to carry, and forced to drop the box or sack. The first four lines of the daemon
method are thus devoted to identifying the object we want the rest of the routine to work with. We begin by declaring a
local variable, carrier, and setting it to self (i.e. the tablet), which will be the object we want to refer to if the gold tablet
is not inside anything. The while loop in the next two lines then walks up the containment tree until it finds an object
that's directly held by the player (if the gold tablet is directly held by the player, it won't have much walking to do). After
these three lines carrier will refer to whichever object it is that the player's directly holding, either the gold tablet
itself, or whatever the gold tablet's being carried around in (if the tablet is inside a box which is inside a sack that's
being carried, carrier will refer to the sack, not the box). The fourth line then uses the library macro
gMessageParams () SO that we can use carrier in parameter substitution strings when generating the messages in the
switch statement.

To see how this all works out in practice, try recompiling and running the game. Then try carrying the gold tablet
around first by hand and then in the sack. You should find that if you carry it by hand, you can just carry it into the
temple and put it on the altar before having to put it down. Strictly speaking, this is all that needs to be done with it; the
catch is that the player can hardly know this without first weighing the gold tablet, which will use up more turns than
this even if the PC brings the scales to the tablet rather than the other way round. This doesn't stop the player
completing the task, but it does force the PC to take a break from carrying the gold tablet at some point. If this was felt
to be too much of a nuiscance, one could perhaps go on to implement, say, a wheelbarrow object in which the tablet
could be pushed around for longer distances (which would not count as carrying it). We'll do this when we come to
look at the TravelPushable class.

Page 139

TADS 3 Tour Guide
10.3. SenseFuse

One problem you may have with a Fuse is that it could go off when the player character is not near enough to
perceive the result, but that any text defined in the method that's executed when the Fuse fires will be displayed
whether it describes something the player character could witness or not. This wasn't a problem with the Daemon and
Fuse we defined on the gold tablet, but in other situations in might be. In such situations what you need is a
SenseFuse - a special type of Fuse that won't display any messages if the player character isn't there to see (or hear,
or smell) what happens.

The way to set up a SenseFuse is very similar to the way you set up a Fuse, except that there are a couple of extra
properties:

new SenseFuse (obj, &prop, turns, source, sense);

This definition will cause obj.prop to be executed after furns turns, as with a Fuse. The difference is that the player will
only see any messages displayed by obj.prop if, at that point in time, the player character can sense the source object
(which in practice may often be the same as the obj object, but need not be) using the sense sense (which could be
sight, sound, smell or touch - most likely one of the first two).

As an example we'll put a SenseFuse on an exploded bomb hidden under a pile of rubble. Once the player finds the
bomb in the rubble, a new fuse is created that will cause the bomb to explode in three turns (killing the player if s/he is
still rash enough to be around). Obviously, we'll also need to create an environment for the bomb, so we'll start by
adding a new location the Tardis can reach:

+ tardisDestinations : SecretFixture, PreinitObject
destinations = static new LookupTable
execute ()
{
destinations['AO0'] = hold;
destinations['A2'] = spaceStation;
destinations['C9'] = redDesert;

destinations['T5"'] outsideCave;
destinations['Q7'] = londonStreet;

Then we can proceed to define a couple of locations, some rubble, and a bomb:
/* London - 1940 */

londonStreet : OutdoorRoom 'City Street' 'the city street'
"Several burned-out and half-destroyed buildings line this section of
the city street along with the ones that are still standing. The destruction
seems to have been fairly recent, since the rubble of fallen masonry still
spills out onto the street, blocking the way south. The road continues to

the north. "

south : NoTravelMessage { "The rubble blocks your path. "; }

east : NoTravelMessage { "The houses directly to the east are burned-out
shells; they don't look safe to enter. "; }

north = streetJunction

’

+ rubble : Immovable 'pile rubble' 'rubble'
"The largest pile of rubble spills out into the street and blocks progress south.
<<bomb.isIn(nil) ? specialDesc : nil>> "
dobjFor (LookUnder)
{
action ()
{
if (bomb.moved)
"There's nothing much there but rubble. ";
else if (bomb.discovered)
"The bomb is still there. ";
else
{
bomb.discover () ;
"You find a metal cylinder buried among the rubble. It looks horribly

Page 140

TADS 3 Tour Guide

like a bomb. ";

}
}
dobjFor (LookIn) asDobjFor (LookUnder)

specialDesc = "Pieces of rubble have been blown all over the street, surrounding
a fresh bomb crater. "

specialDescOrder = 70

useSpecialDesc() { return bomb.isIn(nil); }

bomb : Hidden, Immovable 'unexploded bomb/cylinder' 'bomb'
"It's a fat, round-nosed cylinder with tail fins, on a couple of which
are painted tiny swastikas. "
discover ()
{
inherited;
new SenseFuse(self, &explode, 3, self, sight);
}
explode ()
{
"The bomb explodes, the blast sending chunks of masonry flying in all
directions, one piece of strikes you square on the head. ";
if (gPlayerChar.isIn(location))
endGame (ftDeath) ;
moveInto (nil) ;

}

cannotTakeMsg = 'You must be joking! '

cannotPushMsg = 'That might set it off. '

cannotMoveMsg = 'It\'s probably safest to leave it just where it is. '
streetJunction : OutdoorRoom 'Street Junction' 'the junction'

"The street from the south meets another running east-west. A short way down
to the street to the east a fire crew is fighting a blazing fire. "

south = londonStreet

east : FakeConnector { "After taking a few steps east you recall that
discretion is the better part of valour and decide to keep out of the
way of the fire crew. "}

atmospherelist : ShuffledEventList

{

['"The drone of aircraft engines can be heard overhead. ',
'From somewhere across the city comes the wail of a distant siren. ',
'From somewhere to the ' + dirn + ' comes the bark of anti-aircraft fire. ',

'Off to the ' + dirn + ' you hear the blast of a whistle and the sound
of running feet. ',

'A fire engine races down a street somewhere to the ' + dirn +'. ',
'There\'s a sudden explosion somewhere off to the ' + dirn + ', as
another bomb finds a target. '

]

dirn = (rand('north' , 'south' , 'east' , 'west'))

We override the discover() method of the bomb to set up the new SenseFuse, in such a way that the player character
must be in a position to see it for the messages in explode() to be displayed to the player. In this case we could have
achieved much the same effect by incorporating the message that's displayed into the group of statements governed
by the if (gPlayerChar.isIn(location)) statement, but that would not always be so convenient, and we're trying to
illustrate a SenseFuse!

Later on we'll make this bomb a bit more interesting, for example by adding a Noise object to make it tick. In the
meantime note the use of the specialDesc property on the rubble; we override useSpecialDesc so that this
specialDesc is displayed only after the bomb has gone off, and we set specialDescOrder to 70 (lower than the default
of 100) so that the description of the new bomb crater etc. will come earlier in the listing of the room contents than
other specialDescs and initDescs.

Page 141

TADS 3 Tour Guide
10.4. SenseDaemon

A SenseDaemon, like a SenseFuse, is for use when you want players to see its output only when a certain object can
be sensed.

The way to set up a SenseDaemon is very like that of setting up an ordinary Daemon, or a SenseFuse, namely:

new SenseDaemon (obj, &prop, interval, source, sense);

As with the standard Daemon, this sets up a daemon that will call the method ob5 .prop every interval turns, where
interval must be at least 1 (one). If interval is 1, obj . prop will execute each turn, starting with the current turn. If
interval iS 2, obj.prop Will execute every other turn, starting with the next turn. In general, if interval is n,

ob7 .prop Will execute every n turns, starting in n-7 turns time. Note once again that the second argument to the new
Daemon call must be a property (or method) pointer, hence the &prop syntax. The difference is that the player will
only see any messages displayed by obj.prop if, at that point in time, the player character can sense the source object
(which in practice may often be the same as the obj object, but need not be) using the sense sense (which could be
sight, sound, smell or touch - most likely one of the first two).

We'll create an example of a SenseDaemon when we come to CyclicEventList.

10.5. PromptDaemon

A PromptDaemon is a special kind of daemon that runs once each turn, just before the command prompt is displayed.
This may be useful, for example, where you want to check each turn whether some condition has become true and
take appropriate action if so. Since the PromptDaemon runs every turn, there is no need to specify its frequency, so
you can set one up simply with the command:

newPromptDaemon (obj, &prop);

Which will call obj.prop each turn, just before the command prompt is displayed. Again it may be useful to make a note
of a reference to the PromptDaemon so that it can be removed from the list of active events once its job is done, e.g.

daemonID = newPromptDaemon (obj, &prop):;

Then, when you've finished with the promptDaemon you can simply call:

daemonID.removeEvent () ;

An example of the possible use of a PromptDaemon is given later in connexion with a bomb.

10.6. OneTimePromptDaemon

A OneTimePromptDaemon is a special kind of PromptDaemon that automatically deactivates itself after its first
invocation, thereby ensuring that it is executed only once. A one-time-only prompt daemon is a regular command
prompt daemon, except that it fires only once. After it fires once, the daemon automatically deactivates itself, so that it
won't fire again.

Prompt daemons are occasionally useful for non-recurring processing, when you want to defer some bit of code until a
"safe" time between turns. In these cases, the regular PromptDaemon is inconvenient to use because it automatically
recurs. This subclass is handy for these cases, since it lets you schedule some bit of processing for a single deferred
execution.

One special situation where one-time prompt daemons can be handy is in triggering conversational events - such as
initiating a conversation - at the very beginning of the game. Initiating a conversation can only be done from within an
action context, but no action context is in effect during the game's initialization. An easy way to deal with this is to
create a one-time prompt daemon during initialization, and then trigger the event from the daemon's callback method.
The prompt daemon will set up a daemon action environment just before the first command prompt is displayed, at
which point the callback will be able to trigger the event as though it were in ordinary action handler code. We can't

Page 142

TADS 3 Tour Guide
use a regular Fuse or Daemon for this, since a regular Fuse or Daemon will only fire at the end of the player's turn,
and in the case just described, we need something that fires just before the first command prompt appears.

So, for example, to have an NPC (let's call her Sarah) initiate a conversation, posing a question to the player character
(such as 'What are you doing here?') just before the very first turn, we might could do something like this:

OneTimePromptDaemon, InitObject
execute () { construct(self, &beforePrompt); 1}
beforePrompt ()
{

sarah.initiateConversation (sarahTalking, 'query-presence');
}

’

Don't worry about how iniateConversation works for now, we'll be going into that later. For now it suffices to know that
this is the statement we need to execute to get Sarah chatting just before the first turn, so that the player's first
command can be a require to her question. The point of OneTimePromptDaemon is to provide us somewhere where
we can put this statement and have it execute when we need it.

Note that there's nothing magical about the name beforePrompt() here; we could have called it anything we liked,
although beforePrompt() is at least descriptive of when the method is invoked, and might be useful if we wanted to
define a custom subclass for this kind of situation:

class FirstTurnPromptDaemon: OneTimePromptDaemon, InitObject
execute () { construct(self, &beforePrompt); }
beforePrompt () {}

’

Rather more noteworthy here is the combination of OneTimePromptDaemon with |nitObject, which we'll discuss next.

Page 143

TADS 3 Tour Guide

11. ModuleExecObjects

11.1. ModuleExecObject

ModuleExecObijects are a little like Fuses and Daemons in that they allow code to be executed at a particular point,
although a ModuleExecObject is not the really same thing as a Fuse or Daemon. Instead, ModuleExecObiject is an
abstract base class for various classes that provide modular execution hooks. This class and its subclasses are mix-in
classes - they can be multiply inherited by any object (as long as it's not already some other kind of module execution
object).

The point of the Module Execution Object and its subclasses is to allow libraries and user code to define execution
hooks, without having to worry about what other libraries and user code bits are defining the same hook. When we
need to execute a hook defined via this object, we iterate over all of the instances of the appropriate subclass and
invoke its execute() method.

By default, the order of execution is arbitrary. In some cases, though, dependencies will exist, so that one object
cannot be invoked until another object has already been invoked. In these cases, you must set the execBeforeMe
property to contain a list of the objects whose execute() methods must be invoked before this object's execute()
method is invoked. The library will check this list before calling execute() on this object, and ensure that each object in
the list has been invoked before calling this object's execute(). Similarly, you can use the execAfterMe property to
contain a list of all the ModuleExecObjects that the current object must execute before.

11.2. InitObject

An InitObject is an object that contains an execute() method that is executed at the start of the game, before the first
command prompt occurs. In a particular game much the same effect could be achieved by putting the code in
gameMain.showlntro(), but there are occasions when you might prefer to use InitObject for a particular task, for
example:

» Starting up a Daemon or Fuse, when the InitObject can conveniently be mixed-in with the Daemon or Fuse to form
a single object (as in the OneTimePromptDaemon example above).

» Writing code for a library extension, or code that you want to be reusable between games, for which isolating it in a
separate object will be far more convenient than placing it in a game-specific gameMain.showIntro() method.

» Writing code for a custom class or object that you want to have initialize itself at startup.

Some control is possible over the order of execution of InitObjects by stipulating a list of InitObjects that must be
executed before the current one in the execBeforeMe property, and a list of InitObjects that must be executed after the
current one in the execAfterMe property (this mechanism is common to all ModuleExecObijects).

Note that in many cases, however, it may be better to use a PreinitObject for most of these purposes. One case where
you must use an InitObject rather than a PreinitObject is when you want the object to set up a Fuse or Daemon. Your
code will probably compile if you do this in a PreinitObject, but you'll find that the Fuse or Daemon is not actually set
up when the game runs. Another case where you would need to use an InitObject rather than a PreinitObject is where
you want its execute method to randomize something at the beginning of the game, e.g.:

InitObject
execute ()

{
gameMain.villain = rand(moriarty, darthVader, presidentClark, caligula);
gameMain.villain.moveIntoForTravel (startRoom) ;

’

Although in this example there'd probably be little reason for not putting such code in gameMain.showlntro(). This
might be different if we had a class of objects that we wanted to set themselves up in this sort of manner at the start of
the game, e.g.:

Page 144

TADS 3 Tour Guide

class PredatoryMale: Person, InitObject
mainTargetOfDesire = nil
execute ()
{
mainTargetOfDesire = rand(jane, jill, sandra, mary, virginia);

}

’

The fact that this might allow several predatory males to share the same main target of desire might not matter in the
least in this imaginary game (although in this case we could have overridden initializeActor to achieve the same
result).

11.3. PreinitObject

A PreinitObject works in exactly the same way as an |nitObject with one important difference, its execute method is
executed at the preinitialization stage, not at game startup. Preinitialization is carried out by the compiler before the
game image is written rather than by the interpreter when the game starts, and so is useful for any game initialization
code that will always have the same results (since, having been already carried out at compilation, it doesn't need to
be carried out at game startup when the player might otherwise notice a delay in the game starting).

For example, suppose that instead of randomizing which woman each of our predatory males fancies at the start of
the game, we want to define this for ourselves (so that it never changes from game to game), but that for ease of
computation at some point in our game it's convenient for each of the fanciable woman to maintain a list of the men
who are after them. We might define:

class FanciableWoman: Person
fanciedBy = []

’

class PredatoryMale: Person, PreinitObject

mainTargetOfDesire = nil
execute ()
{

if (mainTargetOfDesire != nil)

mainTargetOfDesire.fanciedBy += self;
Or indeed, in the interests of gender equality, we might have:

class AmorousPerson: Person, PreinitObject

fanciedBy = []
mainTargetOfDesire = nil
execute ()
{

if (mainTargetOfDesire != nil)

mainTargetOfDesire.fanciedBy += self;

Which would allow us to set up whatever tangled web of relationships or would-be relationships we wish, even
including:

narcissus: AmorousPerson 'narcissus' 'Narcissus'
isHim = true
mainObjectOfDesire = self

An alternative (and not uncommon) way to use a PreinitObject to achieve roughly the same result where we want
every Person in the game to be potentially involved in amorous activities and we don't want to define a new class for it
would be the following:

Page 145

TADS 3 Tour Guide

modify Person
fanciedBy = []
mainTargetOfDesire = nil

’

PreinitObject
execute (}

{
for(local obj = firstObj (Person); obj != nil; obj = nextObj (obj, Person));

{
if (obj.mainTargetOfDesire != nil)
obj.mainTargetOfDesire.fanciedBy += obj;

}

11.4. PreSaveObject

PreSaveObject - every instance of this class is notified, via its execute() method, just before we save the game. This
provides a convenient way to make something happen just before our game is saved. The need for this may not arise
very often, but if it should arise it's probably more convenient to define a PreSaveObiject than to tinker about trying to
modify SaveAction or something it calls.

For example, an author really determined to earn the wrath and indignation of his players might write:

PreSaveObject
execute ()

{

"You pathetically pusillanimous poltroon! <i>Real</i> adventures don't need to save!
To penalize you for this cowardly inanity ten thousand points will be instantly
deducted from your score.<.p>";

addToScore (-10000, 'saving the game');

Of course, we don't recommend you follow such an author's example!

11.5. PostRestoreObject

A PostRestoreObiject is similar to a PreSaveObject, except that instead of its execute method being invoked just
before saving, it is invoked just after restoring.

For example, if our imaginary mad IF author (he'd have to be man, wouldn't he) wanted to inspire not only anger but
hatred and loathing, he could add the following:

PostRestoreObject ()
execute ()
{
"You ridiculous wretch! To be restoring this game you must have saved it,
and you <i>know</i> how much I hate that! I suppose you think that way you
can escape the points penalty for saving. Well, you can't -- I'm deducting
another ten thousand points for restoring, and IT SERVES YOU RIGHT!!!!<.p>";

addToScore (-10000, 'restoring the game');

It goes without saying, of course, that the good reader of this guide would never use PostRestoreObject for so
nefarious a purpose, but it could happen that there was some legitimate housekeeping activity we needed to carry out
just after a restore (for example, if we were trying to keep track of how long the player had been playing our game for).

Page 146

TADS 3 Tour Guide

11.6. PostUndoObiject

PostUndoObject - every instance of this class is notified, via its execute() method, immediately after we perform an
'undo’ command.

You can probably guess how our manic player-hating author might put this to evil use:

PostUndoObject
execute ()

{

"If there's one thing I hate more than players feeble enough to save and restore,
it's idiots who ruin the amazing gaming experience I've devised for them by
resorting to UNDO. The penalty of <i>fifty</i> thousand points you're about to
suffer is thus richly deserved.\b
By the way, this makes the game unwinnable - but hey, only lousy LOSERS like
you use UNDO.<.p>";

addToScore (-50000, 'using undo');

Hopefully if you do find yourself using a PostUndoObject it will be for a more legitimate purpose than this, though it's
probably not something you'll need to use very often, if at all. A more legitimate use might be if, for some research
purpose, you wanted to keep track of how often players used UNDO during a session with your game, then you might
do something like this:

transient statisticsObj: object
undoCount = 0
saveCount = 0
restoreCount = 0

’

PostUndoObject
execute ()

{

statisticsObj.undoCount += 1;

}

Because statisticsObj has been declared as transient (for fuller details of which see the Object Definitions section of
the language documentation) its properties will be preseved across operations such as UNDO, RESTART, SAVE and
RESTORE, and this should work (although since a transient object is thus not itself saved or restored, its properties
cannot be preserved across different game sessions, hence the seemingly odd name 'transient' for this type of object).

11.7. PreRestartObject

PreRestartObject is the last member of this set. Every instance of this class is notified, via its execute() method,
just before we restart the game (with a RESTART command, for example).

Our totally insane implementor would probably use it like this:

PreRestartObject

execute ()

{
"NO!! You pathetic worm! I have filled this game with a myriad unmappable
mazes, an infinity of instadeath rooms, a glut of guess-the-verb puzzles,
an unbounded cornucopia of unimplemented objects, and you -- you, you miserable
wretch -- you want to back out of all this by RESTARTING! Well, I'm not
having it. You'll just have to carry on. So there! ";

exit;

Page 147

TADS 3 Tour Guide

At this point you may be feeling thoroughly grateful that there's no PreQuitObject. Unfortunately our Insane
Implementor could always resort to:

modify QuitAction
execSystemAction ()

{

"What? You want to quit my masterpiece? No way! What kind of cretin are
you, anyway?";

But please don't try this at home!

And now, after that little diversion, let's get back to the Quest of the Golden Banana.

Page 148

TADS 3 Tour Guide

12. Pushing Things Around

12.1. TravelPushable

A TravelPushable is an object that can't be picked up but can be pushed from one location to another (by the player
issuing commands such as PUSH WHEELBARROW NORTH or PUSH BARROW INTO SHIP). As a simple example
we can implement a wheelbarrow that would be useful for moving the gold tablet around:

wheelBarrow : TravelPushable, Container 'old tin wheel wheelbarrow/barrow'
'wheelbarrow' @graveyard
"It's an old tin wheelbarrow, a bit battered, but seemingly still
in serviceable condition. "

initSpecialDesc = "An old tin wheelbarrow lies forgotten in one corner of the graveyard. "
specialDesc = "The old tin wheelbarrow rests here. "
cannotTakeMsg = 'The wheelbarrow is a bit too heavy and cumbersome to carry around.

Pushing it would probably prove more productive. '

Since TravelPushable inherits from Immovabile, it's a good idea to give the wheelbarrow a specialDesc as well as an
initSpecialDesc to make sure that it gets listed in room descriptions. Although the default message you get when you
try to take a TravelPushable is okay, we customize it here to say the same thing but in a manner slightly more tailored
to the specific object; we do this by overriding cannotTakeMsg with a single-quoted string (it must contain either a
single-quoted string or a property pointer).

This wheelbarrow will work fine as it is, and will certainly help with carting the gold tablet around. One refinement we
could add is to improve on the "You push the wheelbarrow into the area" that appears each time the barrow is pushed
somewhere. We can take advantage of the fact that we've defined a destName on every location to override
describeMovePushable with something a bit more specific:

modify TravelPushable
describeMovePushable (traveler, connector)

{
if (gActor.isPlayerChar)
"You push <<theName>> into <<location.destName>>. ";

For a more complex example, let's start filling in some of the detail on the south side of the lake. The tunnel south from
the shore will soon come to a deep uncrossable chasm. However, a stone monolith waits on the shore; if the player
pushes it into the chasm, the monolith then forms a bridge that can be crossed. The main trick here is to make the
chasm a room in its own right, and, recognizing that a Room is also a TravelConnector, override its canTravelerPass
and explainTravelBarrier methods to prevent travel unless either the monolith is already in the chasm or it is in the
process of being pushed into the chasm:

southShore : Room 'Rocky shore' 'the rocky shore'
"The rocky shore looks so barren here as to be scarcely worth visiting, apart
from a narrow tunnel leading off to the south"
finalDesc = ". " // for the custom finalDesc property see our inRoomDesc modification
south = narrowTunnel

’

+ monolith : TravelPushable 'large black monolith' 'black monolith'
"Deep black in colour, it's a smooth black oblong about six feet by three, and
about six inches thick. <<isIn (deepChasm) ? 'Currently, it\'s wedged in the

chasm, forming a precarious bridge. ' : nil>>"
initSpecialDesc = ""
specialDesc = "<<isIn(deepChasm) || travelInProgress ? ''
'The black monolith stands on the ground. '>>"
inRoomDesc () { if(!moved) ", and a black monolith projecting out of the rocks"; }
cannotTakeMsg = 'There\'s no way anyone\'s going to lift that great block of stone. '

dobjFor (PushTravel)

{
verify ()

{
if (isIn (deepChasm))

Page 149

TADS 3 Tour Guide
{
illogicalNow ('For one thing you\'re standing on the monolith, and
for another it\'s wedged firmly (you hope) in the chasm. ');
}
else
inherited;
}
action
{
travelInProgress = true;
inherited;
travelInProgress

nil;

}
travelInProgress = nil
describeMovePushable (traveler, connector)
{
if (location == deepChasm)
{
"The monolith has toppled into the chasm, forming a precarious bridge of
on which you're now standing. ";
setSuperclassList ([Floor]);
deepChasm.roomParts += self;
}
else
inherited (traveler, connector);
}
beforeMovePushable (traveler, connector, dest)
{
if (connector == deepChasm)
"You push the monolith towards the edge of the chasm; as it reaches
the edge it begins to topple.\b";
else
"The monolith is <i>very</i> heavy, but with a supreme effort
than nearly gives you three hernias and four burst blood
vessels you manage to start pushing it. ";
}
dobjFor (Sit0On)
{
preCond = inherited + actorDirectlyInRoom
verify ()
{
if (ofKind (Floor) && gActor.isIn(deepChasm))
logicalRank (140, 'most likely floor');
else if (ofKind(Floor))
nonObvious;
else
inherited;
}
}
dobjFor (LieOn)
preCond = inherited + actorDirectlyInRoom
{
verify () { if(ofKind(Floor)) verifyDobjSitOn; else inherited; }

narrowTunnel : DarkRoom 'Narrow Tunnel' 'the narrow tunnel'
"This short section of tunnel leads south from the rocky shore, but then
comes to an abrupt end at the edge of a deep chasm. Another tunnel continues
south from the ledge on the far side of the chasm. "
north = southShore
south = deepChasm

MultiLoc, Enterable ->deepChasm 'deep chasm' 'deep chasm'
"<<deepChasm.desc>>"
locationList = [narrowTunnel, chasmLedge]

deepChasm : DarkRoom 'Deep Chasm' 'the deep chasm'
"The chasm is not something you want to look down if you suffer from

sorts,

vertigo; but a long way below, almost too far down to see, runs a narrow, inky river.

Page 150

TADS 3 Tour Guide
The chasm is about six feet wide, too far to jump<<monolith.isIn(self) ? ', Dbut a
stone monolith forms a bridge of sorts across it' : nil>>. "
north = narrowTunnel
south = chasmLedge
canTravelerPass (traveler)
{return monolith.isIn(self) || monolith.travelInProgress; }
explainTravelBarrier (traveler)
{
"The chasm is too wide to jump over, and you certainly don't
want to fall into it. ";
}
cannotGoThatWayMsg = 'Stepping off the monolith into the chasm would mean
falling to almost certain death. '
roomParts = [defaultCeiling]
lookAroundWithinName (actor, illum)
{
inherited(actor, illum);
if (actor.posture == standing)
" (standing on <<monolith.theName>>)";

+ inkyRiver : Distant 'narrow inky black river/water' 'river'
"The narrow river runs along the bottom of the chasm about a hundred feet or so below;
its water looks inky black in the near darkness down there. "

’

chasmLedge : DarkRoom 'Ledge of Chasm' 'the ledge of the chasm'

"A deep, wide chasm splits the ground immediately to the north of this
narrow ledge, while a dark tunnel runs south. Another tunnel can be
seen leading north from the far side of the chasm. "

north = deepChasm

’

One trick here is to override deepChasm.lookAroundWithinName so that it adds "(standing on the black monolith)" to
the name of the room when the player character is indeed standing (the inherited behaviour will deal with sitting and

lying).

The other trick here is to make the monolith transform itself into a Floor and add itself to the chasm's roomParts once
it arrives in the chasm, so that we get the right responses if the player SITS or LIES there. Also, since the
defaultFloors of the adjacent rooms will also be in scope thanks to the DistanceConnector we'll be adding later, we
need to make the monolith the most likely item to sit or lie on when we're directly on top of it, but not when we're in
one of the adjacent locations. Conversely, we add actorDirectlylnRoom to the preconditions for sitting or lying on the
monolith to prevent the otherwise rather odd behaviour that will occur (once the DistanceConnector is in place) when
the player character attempts to sit or lie on the monolith while he's in an adjacent location.

12.2. PushTravelBarrier

A PushTravelBarrier is a special kind of TravelBarrier that can be used (by attaching it to the travelBarrier property of
a TravelConnector) to block (or selectively block) pushing a TravelPushable via this connector. By default a
PushTravelBarrier blocks all TravelPushables, but this can be changed by overriding its canTravelerPass method, or,
perhaps more simply, its canPushedObjectPass (obj) method, which canTravelerPass calls. You can also
override the explainTravelBarrier method to explain why pushing an object this way isn't allowed.

For example, we might well want to prevent pushing any TravelPushables up and down stairs or ladders. To do this,
we can simply define an appropriate PushTravelBarrier object and modify the Stairway class to make use of it:

modify Stairway
travelBarrier = [stairBarrier]

’

stairBarrier : PushTravelBarrier
explainTravelBarrier (traveler)

{
Page 151

TADS 3 Tour Guide
local obj = traveler.obj ;
gMessageParams (obj) ;
reportFailure (' {The obj/he} can\'t negotiate ladders and stairs. ');

Although we allow the monolith to be pushed down the tunnel, we may feel that it shouldn't be possible to push it
aboard the ship. This time we can create a selective PushTravelBarrier that just blocks the monolith:

monolithBarrier : PushTravelBarrier
canPushedObjectPass (obj) { return obj != monolith; }
explainTravelBarrier (traveler)
{
"The monolith is far too large and unwieldy to be pushed there. ";

}

Then all we have to do is attach this barrier to the portDeck of the ship (which is where anything entering the ship will
arrive):

portDeck : Deck 'Port Deck' 'the main deck'
"This part of the main deck is on the port side of the ship, close to the shore. The
deck continues to fore, aft and starboard, and a tall mast towers up from
the middle of the main deck. "
fore = foreDeck
aft = quarterDeck
starboard = starboardDeck

out = (ship.location)
up = mast
travelBarrier = [monolithBarrier]

Once again, this works because a Room (from which the custom Deck class inherits) inherits from TravelConnector.

Page 152

TADS 3 Tour Guide

13. Intangibles & Senses

13.1. Intangibles - Overview

Intangibles in the TADS 3 library constitute things that have some kind of presence but are not physical objects, such
a light, smoke, smells and sounds. The class hierarchy for Intangible is:

Intangible
DistanceConnector

SensoryEmanation
Noise
SimpleNoise
Odor

SimpleOdor

Vaporous

SenseConnector
DistanceConnector

While we're looking at intangibles and sensory things, we'll also cover:

SensoryEvent
SoundEvent

SoundObserver

13.2. Intangible

An Intangible object (as opposed to an object derived from some of Intangible's subclasses) is one that has no
sensory presence whatsoever, which means that the player can never refer to it, even with a bare EXAMINE
command. That means it is really only useful for abstract objects that the player will never interact with directly (as a
mix-in class with a SenseConnector, perhaps, as in the DistanceConnector). To represent intangible but sensible
objects such a ray of light, you are better off using the Vaporous class than trying to tweak Intangible.

13.3. DistanceConnector

Let's go back to the chasm we created between the narrow tunnel from the south shore and the opposite ledge. Since
the chasm is only six feet wide, you would have thought that once you had pushed the monolith into it to form the
bridge, you'd be able to see the monolith from either side of the chasm (as well as the chasm itself). Furthermore, with
this setup, you'd expect that if a torch/flashlight were left on one side of the chasm you'd still have light enough to
cross the chasm by. In fact, if you try putting this to the test, the transcript you'll see is something like this:

>push monolith south
Deep Chasm (standing on the monolith)

The chasm is not something you want to look down if you suffer from vertigo; the bottom is far out of sight in the
impenetrable blackness below. It is about six feet wide, too far to jump.

The monolith topples into the chasm, forming a precarious bridge of sorts, onto which you step.

>s
Ledge of Chasm

A deep, wide chasm splits the ground immediately to the north of this narrow ledge, while a dark tunnel runs south.
Another tunnel can be seen leading north from the far side of the chasm.

Page 153

TADS 3 Tour Guide

>x monolith
You see no monolith here.

>drop torch
Dropped.

>n
In the dark

It's pitch black.

What happens, of course, is that the game treats the two sides of the chasm and the chasm itself as three entirely
separate locations; even if in our own mind's eye they are closely related in the sense of being in close physical
proximity and visually open to one another, there's no way the game can read our mind and know this. There is,
however, a way we can tell the game that we want locations to be connected in this way, and that is to use a
DistanceConnector. This is basically a way of linking separate locations by sight without making them into a single
location, so that we can break up a large location such as a big hall, a large town square, or (as in this case) a chasm
and its two sides into separate rooms while maintaining visual contact between them.

To use a DistanceConnector is extremely easy. You just need the class name followed by a list of the locations being
connected. In the present case we just need to define:

DistanceConnector [narrowTunnel, deepChasm, chasmLedge] ;

You should now be able to push the monolith into the chasm, carry on to the other side, EXAMINE the monolith from
there, drop the torch there and walk back across the chasm still by the light of the torch. When you EXAMINE the
monolith, though, you may be told "It's too far away to make out any detail", which doesn't seem too reasonable given
that it's a large block of stone right at your feet. The way to deal with this is to add the following line to the definition of
the monolith:

sightSize = large

By default sightSize (and smellSize, soundSize and touchSize) are all medium, which means that the object can be
sensed at a distance but not well enough to make out any detail. Setting sightSize = small would mean that we could
not even see the object at a distance, while setting it to large means that we can not only see it but make out the
details (i.e. see the normal desc property in response to an EXAMINE command).

Once we can see things at a distance we may be faced with another problem: what can be seen from a distance may
not be the same as what can be seen close-to. Thus the way we want objects to be described from a distance may be
different from their standard (close-up) description. If we use an initSpecialDesc or specialDesc we can also define the
corresponding properties remotelnitSpecialDesc and remoteSpecialDesc to use when the object is viewed from
another location, for example:

museumLeaflet : Readable 'small crumpled piece yellow leaflet/paper' 'yellow leaflet'
@chasmLedge
"It seems to be a leaflet advertising the Eerhtstad Caves Museum of
Curious Antiquities. "
readDesc = "Amongst such oddities as the Amber Amulet of Amazement, the
Green Gargoyle of Gloom, the Lost Crown of King Peregrine the Pipsqueak
and the Invisible Mantle of the Naked Emperor, your eye i1s caught by
an advertisement for the star exhibit: the Golden Banana of Discord.
The reverse of side of the leaflet proclaims, <g>Our most wanted
acquisition of the month is the legendary Great Purple Carbuncle of
King Solomon; if discovered, please bring to the curator who will
not only receive it with <i>great</i> gratitude but ensure that a small
brass plaque is inscribed to your everlasting honour!</g><.p>"
initSpecialDesc = "A small yellow leaflet lies on the ground. "
remoteInitSpecialDesc (actor)
{
"On the <<actor.isIn(deepChasm) ? 'southern' : 'far'>>
ledge of the chasm lies a crumpled piece of yellow paper. ";

}

Note that remoteInitSpecialDesc takes a single parameter, actor. This normally represents the actor from whose
point of view the object is to be described. If this affects the remote description at all, it will normally depend on the

Page 154

TADS 3 Tour Guide

location of the actor; thus we can use it here to vary the description of the location of the leaflet depending on the
location of the player character when it's described (if we wanted to, we could also vary the description of the leaflet
itself, perhaps making it slighly more detailed from the closer point of view).

There's a further refinement we can make here: if you push the monolith into the chasm, walk south to the ledge, take
the leaflet and drop it, then return to the monolith, the room description will now state:

In the ledge of chasm, you see a yellow leaflet.

This shows that the leaflet is still visible, but that it's in the 'ledge of chasm' room, not the current location. However, 'In
the ledge of chasm' is not the most felicitous way to describe the position of the leaflet, so we may want to customise
it. We can do this by overriding the inRoomName(pov) method of chasmLedge (where pov has the same meaning as
before), for example:

chasmLedge : DarkRoom 'Ledge of Chasm' 'the ledge of the chasm'

"A deep, wide chasm splits the ground immediately to the north of this
narrow ledge, while a dark tunnel runs south. Another tunnel can be
seen leading north from the far side of the chasm. "

north = deepChasm

inRoomName (pov)

{

return 'on the ' + (pov.isIn(deepChasm) ? 'south' : 'far') + ' ledge of the chasm';

}

13.4. Occluder

While a DistanceConnector allows you to see more objects from a particular location than you normally would (by
letting you see what's in neighbouring locations) an Occluder can remove objects from visibility (or the scope of any
other sense).

The reason you may want to do this is that what is visible can depend on where you're looking from. For example,
suppose you have a window looking into a living-room. You could implement the window as a SenseConnector to
make it possible for the game to list the contents of the room when the player character is on the outside looking in.
But suppose there's a bookcase on the same wall as the window; then the player character probably ought not to be
able to see either the bookcase or anything that's in the bookcase from outside the window, although the bookcase
and its contents are perfectly visible from anywhere within the living-room. To achieve this, you'd use an Occluder to
remove the bookcase and its contents from sensory scope if the point of view was in the location on the outside of the
window, defining what you want occluded in the Occluder's occludeObj(obj, sense, pov) method.

To make an Occluder occlude an object for a particular combination of object (the obj parameter), sense, and point of
view (the pov parameter), you just make the occludeObj method return true for that combination (and nil otherwise). In
the bookcase example the occludeObj method might thus look something like:

occludeObj (obj, sense, pov)

{
return (obj.isIn(bookcase) || obj == bookcase) && pov.isIn(outsideWindow) ;

}

(Where outsideWindow is the name of the location on the outside of the window). Note that here we have made no
use of the sense parameter, since we want occlusion to occur (or not occur) for all senses; this is probably the most
common case, but there may be exceptions (for example a loudly ticking clock placed on the bookcase might
conceivably be audible from outside the window), in which case you'd also need to test for the sense parameter.

Since we haven't got a convenient window and bookcase to hand in the Quest of the Golden Banana, we'll use a
different example here. You'll recall that the description of the deepChasm room mentions a narrow river visible a
hundred feet below at the bottom of the chasm, and that we added a Distant object to represent this river in case the
player tries to refer to it (see the TravelPushable section above). Now that we've added a DistanceConnector linking
deepChasm to the rooms either side of it (chasmLedge and narrowTunnel), the inkyRiver object will be in scope from
those two locations too. However, since the chasm is so deep the river at its bottom should only be visible when the
player character is actually in deepChasm (on the monolith, looking straight down). If he is one of the locations
neighbouring the chasm, the chasm walls will occlude the river from view.

Page 155

TADS 3 Tour Guide

Occluder is a mix-in class, which means that we need to mix it in with another class. We don't need to create an object
specially for the purpose, however; in this case the DistanceConnector we've just created will prove entirely suitable.
We can now modify it to incorporate the Occluder:

Occluder, DistanceConnector [narrowTunnel, deepChasm, chasmLedge]
occludeObj (obj, sense, pov)
{

return obj == inkyRiver && !'pov.isIn(deepChasm) ;
}

If you now recompile and run the game you should find that the river is now visible only from the chasm.

Note: although we incorporated the Occluder into the DistanceConnector for convenience, the action of the Occluder
is not restricted to that DistanceConnector. If, at a later stage, we were to add an overhanging ledge some way above
the chasm, and then add another, completely separate DistanceConnector, linking the overhanging ledge and the
chasm, the river would not be visible from the overhanging ledge, since the Occluder we've already created would still
occlude it (unless we modified its occludeObj method to do something different). This behaviour of Occluder is actually
pretty useful, since it enables you to define all the occlusion rules for a given location in one place, but it can be a little
confusing if you're not expecting it.

For this reason, if you have a location joined to several other locations by different DistanceConnectors (or
SenseConnectors), you may find it more intuitive to create a separate object, such as a SecretFixture, to act as the
Occluder. For example, instead of adding the Occluder to the DistanceConnector as in the example above, we could
have added a SecretFixture to the deepChasm room (say, immediately after the definition of inkyRiver):

+ Occluder, SecretFixture
occludeObj (obj, sense, pov)

{

return obj == inkyRiver && !pov.isIn(deepChasm);
}

And it would have worked in exactly the same way.

Note there is absolutely no need to do it this way in such a case; you may simply find it clearer to do so. In particular, if
you have a complex set of interconnections via DistantConnectors with different objects occluded from different points
of view, you may find it easier to set up an Occluder, SecretFixture in each of the linked locations, and have each one

start by not occluding anything when the pov is in the same location, e.qg.:

+ Occluder, SecretFixture
occludeObj (obj, sense, pov)

{
if (pov.isIn(roomLocation))
return nil;

if (obj.ofKind (Distant))
return true;

if (pov.isIn(garden))
return (obj == sideboard || obj.isIn(sideboard));

’

In this example we start by ensuring that nothing is Occluded if the point of view is in the same room as the Occluder -
this can be useful in complex cases to ensure we don't end up occluding something by accident. We then occlude all
Distant objects (we might want to do this because an object implemented as Distant in one location might be
implemented rather differently in a neighbouring location); note that this will not occlude Distant objects when the pov
is in the same location, since in this case occludeObj will already have return nil before getting to this test. Next we
make the sideboard and its contents invisible from the garden. We could then go on to add any further occlusion rules
we wanted.

As from TADS 3.0.9 it is possible to let individual objects decide whether they are occluded by a given occluder. By
default the TADS 3.0.9 libary defined Occluder.occludeObj thus:

Page 156

TADS 3 Tour Guide
occludeObj (obj, sense, pov)

{
/* by default, simply ask the object what it thinks */
return obj.isOccludedBy(self, sense, pov);

While Thing.isOccludedByY() is defined in the library as:

isOccludedBy (occluder, sense, pov) { return nil; }

Thus, for example, if there was a window through which you could see into the sitting room from the garden, but you
couldn't see the bookcase against the wall and the mirror hanging on the wall, instead of trying to write the appropriate
occludeObj() routine on the Occluder, you could write isOccludedBy routines on the mirror and bookcase:

mirror: Fixture 'plain square mirror' 'mirror'
"It's a plain square mirror in which you can see your reflection quite clearly. "
isOccludedBy (occluder, sense, pov)

{

return occluder == window && pov.isIn(garden);

}

And likewise for the bookcase. Whether you find it easier to write the occlusion rules on the Occluder or on individual
objects depends partly on the situation and partly on personal taste. As a general rule, the more complicated the
situation, and the more different cases you need to take into account for the more objects, the more likely an
occludeObj() routine written on the Occluder is likely to be bug-ridden, and the safer it might be to write your occlusion
rules on individual objects. On the other hand, where there's a simple occlusion rule (e.g. we don't want any objects of
class Distant located in the garden to be visible when looking through the window from inside the house), the simpler it
might be to write the rules in the occludeObj() routine of the Occluder. It is, of course, possible to combine both
approaches:

window: Occluder, Fixture 'window' 'window' @sittingRoom

occludeObij (obj, sense, pov)
{
return (obj.ofKind(Distant) && obj.isIn(garden) && pov.isIn(sittingRoom))
| | inherited(obj, sense, pov);

13.5. Vaporous

Vaporous is a good class to use for something you can see, and maybe smell and hear, but that is not fully tangible,
such as a ray of light, a flame, or smoke. To set up an example, let's start creating some locations on the east side of
the lake:

eastShore : Room 'Stone Jetty' 'the stone jetty'
"This bleak stone jetty is little more than a narrow corridor between the lake to
the west and the rough cave wall to the east. A broad flight of stone steps leads
down to the south, while a much narrower flight leads up to the north. "
south = eastShoreDown
down asExit (south)

+ eastShoreDown : StairwayDown 'broad flight stone steps' 'broad stone steps'
"The broad stone steps looks fatally inviting, an easy walk down into the
bowels of the earth. "
isPlural = true

Page 157

TADS 3 Tour Guide

hellVestibule : Room 'Vestibule of Hell Fire Cavern' 'the vestibule'

"The broad stone steps leading up to the north come to an end in this small, hot,
rough round cave that seems to form the vestibule to what lies beyond the
uninviting entrance to the east, through which comes a dull red glow. A
sign next to this entrance declares it to be the entrance to Hell Fire Cavern. "

north = hellVestibuleUp

up asExit (north)

+ hellVestibuleUp : StairwayUp ->eastShoreDown 'broad stone steps' 'broad stone steps'
"The steps back up to the jetty look long, rough and wearisome. "
isPlural = true

+ Readable, Decoration 'sign' 'sign'
"The sign declares:\b
HELL FIRE CAVERN\n
ADMISSION ABSOLUTELY FREE\n
(getting out alive not guaranteed)\n"

The description of hellVestibule refers to a "dull red glow"; this is not something the player can TAKE, PUSH, OPEN or
otherwise interact with as if it were a physical object, but it is plainly something the player can see, and so could
EXAMINE. This makes it a good candidate for implementation as a Vaporous:

+ redGlow : Vaporous 'dull red glow' 'dull red glow'
"It flickers a dull, hungry shade of red with a diabolical, fiery look to it. "

The only thing you can meaningfully do to a Vaporous is EXAMINE in (or LISTEN TO it or SMELL it if the author
provides a listenDesc and a smellDesc), otherwise it provides one standard message if the player tries to LOOK IN,
UNDER or BEHIND ("You just see the dull red glow.") and another if you try to do anything else to it, such as PUSH,
TAKE or EAT it ("You can't do that to a dull red glow."). For most purposes these messages are probably fine, but you

can easily change them if you want to by overriding the 1ookInvaporousMsg and notWithIntangibleMsg properties,
e.g.

+ redGlow: Vaporous 'dull red glow' 'dull red glow'
"It flickers a dull, hungry shade of red with a diabolical, fiery look to it. "
lookInVaporousMsg (obj) { return 'It\'s just as red whichever way you look at it. '; }
notWithIntangibleMsg (obj) { return 'That\'s not a particularly practical suggestion. '; }

Note that these two message properties have to be overridden as methods with a single parameter that return a
single-quoted string. Unfortunately, this is not a general rule when overriding a message property; it other cases you
might simply need to override the message property with a single-quoted string. To find out what you need to do in
any particular case you need to look up the corresponding message property in the library code to see how it is
implemented.

13.6. SimpleOdor

Along with its close relative, SimpleNoise, SimpleOdor offers a very straightforward way of representing an intangible
sensory presence (i.e. a sound or smell), which can be associated either with a location, a particular object, or a
number of objects. For more sophisticated behaviour involving smells you may want to consider the Odor class, which
we shall come to shortly.

Let's suppose that we want the player to know that there's a whiff of sulphur around the cavern entrance we
mentioned in the description of the hellVestibule location. We could achieve this simply by adding the following to the
list of objects in hellVestibule

+ SimpleOdor 'sulphur/sulfur' 'sulphur'
"A strong whiff of sulphur comes through the cavern entrance to the east. "

Page 158

TADS 3 Tour Guide

Now if we go to hellVestibule and type a SMELL command, we'll see the message "A strong whiff of sulphur comes
through the cavern entrance to the east. " This is the standard use of SimpleOdor (and SimpleNoise): to add an
ongoing smell (or sound) to a location.

However, since we've mentioned the cavern entrance in the room description, and we say that that's where the smell
is coming from, we might prefer to associate the SimpleOdor particularly with the entrance:

+ cavernEntrance: ThroughPassage 'east eastern cavern entrance' 'cavern entrance'
"It's wide, with a sign next to it, and it emits an eerie red glow. "

’

++ SimpleOdor 'whiff sulphur/sulfur' 'sulphur'
"A strong whiff of sulphur comes through the cavern entrance. "

’

At first sight this may seem to achieve no more than adding smel1besc ="A strong whiff of sulphur comes
through the cavern entrance. " to the definition of cavernEntrance. There is, however, one small but important
difference. Using the smellDesc method, we get a description of the odor if we type SMELL CAVERN ENTRANCE but
not if we just type SMELL (in which case we'll be told "You smell nothing out of the ordinary"). Using the SimpleOdor
object, however, we get the description of the smell either way. We can also SMELL WHIFF or SMELL SULPHUR or
SMELL WHIFF OF SULPHUR.

We can also add a further refinement. With the SimpleOdor nested in the cavernEntrance as above, if we issue the
command SMELL RED GLOW we'll be told "You smell nothing out of the ordinary. " Now, there's an argument for
saying that since a glow doesn't smell, this is the right response. And yet one may feel it's a bit odd that when one
smells the entrance one smells the sulphur, but that when one smells the glow coming through the entrance one
smells nothing odd; is the human sense of smell really that localised? Well, if we did take that view we could very
easily attach the SimpleOdor to the red glow as well by making it a MultiLoc:

+ MultiLoc, SimpleOdor 'whiff sulphur/sulfur' 'sulphur'
"A strong whiff of sulphur comes through the cavern entrance. "
locationList = [cavernEntrance, redGlow]

’

(Note that once we define it as a MultiLoc the + no longer defines its location, it just allows us to continue listing other
objects after if with the + notation and have them be located in hellVestibule). Now we can SMELL, SMELL
ENTRANCE, SMELL WHIFF, or SMELL RED GLOW and receive the same answer each time, and this is certainly
rather more than we can do by setting one smellDesc property.

If we really want, we can take this a stage further still. SimpleOdor (and SimpleNoise) have an isAmbient property
which, by default, is set to true. If we set it to nil, the SimpleOdor won't wait for us to SMELL anything, it'll announce its
presence each time we get a description of the room - or each time we examine the cave entrance or the red glow:

+ MultiLoc, SimpleOdor 'whiff sulphur/sulfur' 'sulphur'
"A strong whiff of sulphur comes through the cavern entrance. "
isAmbient = nil
locationList = [cavernEntrance, redGlow]

’

You may or may not think the effect is appropriate here; it calls attention to a smell that the player might otherwise
miss, but could quickly become monotonous. We are getting to the point where it might be better to use the greater
complexity of an Odor to get the effect we'd really like. Nevertheless, we introduce the isAmbient property here just to
show what it does; whether you prefer to leave isAmbient as nil or true here is up to you. It also illustrates a point that
may at first sight seem counter-intuitive. A SimpleOdor (or any other kind of SensoryEmanation object) announces is
presence when isAmbient is nil, but not when it is true, whereas one might have expected an ambient sensory one to
be something that was more proactive in making its presence felt. Here we have to understand 'ambient' in the sense
of 'background' (which is admittedly not quite the meaning given in the OED); a background smell (or noise) is one
that doesn't obtrude itself on our awareness unless and until we actively seek it out (by explicitly SMELLing or
LISTENing).

Page 159

TADS 3 Tour Guide

13.7. SimpleNoise

SimpleNoise is simply the sonic equivalent of SimpleOdor. Everything that applies to the one applies to the other,
except for the obvious difference that a SimpleNoise response to LISTEN or LISTEN TO SOMETHING commands
rather than SMELL and SMELL SOMETHING commands.

Having taken SimpleOdor through its paces and exercised it every which way, one simple example of a SimpleNoise
should suffice. Add the following directly after the definition of the caveEntrance object:

++ SimpleNoise 'intermittent muffled deep rumbling sound/sounds' 'sound'
"An intermittent and slightly muffled deep rumbling echoes through the cavern entrance. "

’

In this case there seems to be no need to attach this sound to the red glow as well (one might conceivably smell the
glow, but one would not expect to hear it), and besides there is no need to go over essentially the same theme and
variations in a closely related key. For more sophisticated sounds, though, you might want to consider using the Noise
class.

13.8. Odor

The Odor class is the big brother of the SimpleOdor class we met just a little earlier. It's function is to represent a smell
emanating an object or pervading a location, but in a way that gives the author more control than does the
SimpleOdor. To make an object the source of an odour (or noise), simply locate the odour (or noise) within that object.

An Odor (or a Noise for that matter) provides several properties for customisation:

sourceDesc - The description of the odour (or noise) that's added to the description of the source of the odour (or
noise) when the source is examined.

descWithSource - The description of the odour/noise given when the source is visible and we EXAMINE or SMELL
the odour (or listen to the noise).

descWithOutSource - The description of the odour/noise when the source is not visible (e.g. because it's in a closed
container or hidden under something else)

hereWithSource - The message displayed in the room description to describe this smell or sound when its source is
visible.

hereWithoutSource - The message displayed in the room description to describe this smell or sound when its source
is not visible.

nolLongerHere - The message displayed when the source of the sound or smell goes out of scope (e.g. because the
player character leaves the location of its source)

isAmbient - As with SimpleNoise, this is a true/nil property that decides whether the smell mentions itself in room
descriptions etc. (if isAmbient is nil) or only in response to an explicit SMELL/EXAMINE command (if isAmbient is
true). The only difference from simpleOdor (or SimpleNoise) is that on Odor (and Noise) isAmbient is nil by default.

displaySchedule - This can contain a list of numbers defining the frrequency with which the smell (or noise) is
mentioned spontaneously. This can be used to emulate the fact that once someone becomes used to a sound or
smell it tends to fade into the background of their awareness, and to avoid the repetiveness that might come from
displaying the same message about the smell (or noise) each turn. For example, if displaySchedule were set to [1, 2,
4] a message describing the smell would be displayed for two successive turns, then again after two turns, then every
four turns thereafter. If the list of numbers end with nil the spontaneous display of messages about the smell ceases
when the end of the list is reached.

isEmanating - This is a boolean flag (true or nil) that can be used to turn the odor (or sound) on or off. The default
value is true (i.e. the SensoryEmanation is on). For SensoryEmanations belonging to dynamic objects such as actors,
it can be useful to turn the emanation on or off; e.g. an actor might stop humming or hammering when the player
character converses with him, but resume making humming or hammering noises once the conversation is over.

Page 160

TADS 3 Tour Guide

So much for the theory, now let's put it into practice. First we'll create another location:

hellFireCavern : Room 'Hell Fire Cavern' 'Hell Fire Cavern'
"This narrow shelf of rock ends at a round hole to the west, and a sheer
drop to the east. It overlooks a bleak and barren plain several hundred
feet below, on the far side of which an ugly volcano, the aptly-named Mount Gloom,
belches fire and smoke and ash in constant rotation, shedding a hellish red
light over the entire infernal scene. A rough staircase of sorts, in places
little more than a slippery stone pathway and in others a jumble
of rocks, leads northwards down to the lava-strewn plain. "

west = cavernExit

out asExit (west)

north = roughStaircase

down asExit (north)

south : NoTravelMessage { "That way is solid rock. " }

east : NoTravelMessage { "There's a sheer drop of several hundred feet that way. " }
+ cavernExit : ThroughPassage ->cavernEntrance 'round hole' 'round hole'

"The large round hole piercing the cavern wall is easily large enough
to walk through."

+ roughStaircase : StairwayDown 'rough stone slippery staircase/pathway' 'rough staircase'
"It looks a rough descent, possibly treacherous in places, but probably
passable with care. "
canTravelerPass (traveler) { return traveler.isMasked; }
explainTravelBarrier (traveler)
{ "The sulphurous fumes become too overpowering and drive you back. "; }

’

MultiLoc, Distant 'mount volcano/gloom' 'volcano'

"The volcano rises up from the basalt plain like an angry sore, belching fumes,
smoke and occasional balls of lava, which spit from the summit and ooze
pus-like down its rugged slopes. "

locationList = [hellFireCavern]

+ Vaporous 'hellish red light' 'hellish red light'
"It's the sole source of light for the great cavern, enough to see by, but
only in a gloomy, bloodshot sort of way. "
smellDesc = "You can't exactly smell the light, but you can sure
smell the sulphur! "

There's nothing new here, but note the use of another Vaporous object to represent the hellish red light. We make the
volcano a MultiLoc since it will be visible from more than one location, but we can't add the other locations to its
locationList until we've created them. For now, we'll concentrate on making in the source of the suphurous smells by
adding:

+ Odor 'strong smell sulphur/sulfur' 'smell of sulphur'

descWithSource = "The sulphurous fumes are almost certainly coming from
the volcano. "
hereWithSource = "There's a strong smell of sulphur, almost enough to choke you. "
displaySchedule = [2, 3, 3, 5]
nolongerHere = "The smell of sulphur diminishes a little. "

In order to descend the rough staircase the player character needs to be wearing a gas mask, which we'll provide in
the next section. In anticipation of that, we have to consider what happens to all the odours when the player character
is wearing the gas mask; presumably none of them should be reported. This is actually a little tricky to achieve.

We can start by preventing any actor from smelling an object if that actor is wearing the gas mask:

modify Actor
canSmell (obj)
{
if (isMasked)
return nil;
else

Page 161

TADS 3 Tour Guide

return inherited(obj);
}

’

That deals with the transitive form of the smell command, such as SMELL SULPHUR, but we also need to deal with
the intransitive form, the simple SMELL command:

modify SmellImplicitAction
execAction ()

{
if (gActor.isMasked)
{
"{You/he} can't smell anything with that gas mask on. ";
}

inherited;

Finally, if the player character is wearing the gas mask we also have to block the messages that will be displayed in
the room description or according to the display schedule, and the message that's displayed when an Odor goes out
of scope:

modify Odor
emanationHereDesc

{
if (gPlayerChar.isMasked)
return;
inherited;

}

endEmanation
{
if (gPlayerChar.isMasked)
return;
inherited;

}

’

Note that so far we have not referred to any specific gas mask object; we have simply referred throughout to as yet
undefined Actor property isMasked. This not only lets us compile the code before defining any gas mask object
(isMasked will simply return nil), it means that when we come to define what counts as wearing a gas mask, we need
only do so in one place (Actor.isMasked); moreover, if we subsequently want to change what counts as wearing a gas
mask, we need only change it in one place.

13.9. Noise

The Noise class works precisely like the Odor class, except that it is used for sounds rather than smells. Precisely the
same properties are available to customise it. We can continue our illustration by making the volcano the source of a
sound as well as a smell:

+ Noise 'ominous sound/rumble/rumbling' 'rumble'
sourceDesc = "Mount Gloom seems to be the source of the ominous rumbling. "
descWithSource = "The continuous bass rumble is punctuated by percussive
explosions at irregular intervals. "
hereWithSource = "An ominous rumble shakes the vast cavern. "
displaySchedule = [1,2,2,4]

’

The only thing we have done new here is to add a sourceDesc, which you should see added to the description of the
volcano when you EXAMINE MOUNT GLOOM.

To illustrate the descWithoutSource and hereWithoutSource properties we'll go back and add a ticking sound to the
bomb we buried under a pile of rubble some time back, at the same time expanding what the bomb does when it
explodes.

Page 162

TADS 3 Tour Guide

+ bomb : Hidden, Immovable 'unexploded bomb/cylinder' 'bomb'
"It's a fat, round-nosed cylinder with tail fins, on a couple of which
are painted tiny swastikas. "
discover ()
{
inherited;
new SenseFuse (self, &explode, 3, self, sight);
}
explode ()
{
"The bomb explodes, the blast sending chunks of masonry flying in all
directions, one piece of strikes you square on the head. ";
if (gPlayerChar.isIn(location))
endGame (ftDeath) ;
respiratorBox.movelInto (location) ;
respiratorBox.moved = nil;
movelInto (nil);

}

cannotTakeMsg = 'You must be joking! '
cannotPushMsg = 'That might set it off. '
cannotMoveMsg = 'It\'s probably safest to leave it just where it is. '

’

++ Noise 'tick/ticking' 'ticking'

sourceDesc = "It's ticking. "
descWithSource = "The ticking is coming from the bomb. "
descWithoutSource = "The ticking seems to be coming from the pile of rubble. "
hereWithSource = "The bomb is ticking. "
hereWithoutSource = "A ticking comes from the direction of the rubble. "
displaySchedule = [1]

respiratorBox : OpenableContainer 'small (respirator) khaki bag/box' 'khaki bag'

"The square bag is made of coarse khaki fabric and has a pair of carrying straps.

bulkCapacity = 4

initSpecialDesc = "A small khaki bag lies in the street, perhaps dislodged from the
rubble by the recent explosion. "

+ gasMask : Wearable 'gas mask/respirator/gas-mask/gasmask' 'gas mask'
"It's an ungainly-looking thing with round glass circles for seeing through
and a kind of cylindrical snout to fit over nose and mouth, all held together
by a black rubber face-mask. "

The descWithoutSource and hereWithoutSource properties contain what is displayed while the bomb is still hidden in
the rubble. Once the player investigates the source of the tick by looking in or under the rubble, the bomb is revealed
and the descWithSource and hereWithSource messages are used instead. We set the displaySchedule to [1] to

display the hereWith/WithoutSource message each turn, since the ticking can reasonably be expected to engage the

player's attention.

Now that we've defined the gas mask, we can (provisionally) define what it means for an actor to be masked:

modify Actor
canSmell (obj)
{
if (isMasked)
return nil;
else
return inherited(obj);

}
isMasked = (gasMask.isWornBy (self))

Page 163

TADS 3 Tour Guide
13.10. SenseConnector

Unless the game author takes steps to make things otherwise, each location behaves like a sealed island; nothing that
happens in one location can be seen, heard, felt, or smelled in another. Usually this is realistic enough, but there are
occasions when it's not quite what we want; on such occasions we can join two or more locations by a
SenseConnector, which can pass one or more senses between locations with varying degrees of transparency. The
DistanceConnector we have already met is a specialized kind of SenseConnector that passes all four senses (taste
excluded as not really relevant) as distant.

There are basically two ways you can define what senses a SenseConnector passes in what way. The first way is to
set its connectorMaterial property to one of the materials defined in the library (or one you define yourself), each of
which defines some combination of the senses as transparent (which means that they are passed with no
degradation, as if their source was right under our nose) and the remainder as opaque (which means that they aren't
passed at all). Alternatively, if none of these pre-defined materials give you what you want, and you don't want to
define another (which may be needless labour), you can override your SenseConnector's transSensingThru(sense)
method to return the appropriate level of transparency for each sense, which may be either transparent, opaque,
distant or obscured. This is the method we shall be using shortly.

We have arranged for the bomb to detonate and to kill the player character if s/he's nearby, but as yet there's nothing
to tell the player when the bomb explodes if the player character goes wandering off into a neighbouring location.
There are several ways this could be achieved, including the brute force method of (say) a prompt daemon that
checks once a turn whether the bomb is still present and reports the explosion if it is not, giving a different message
according to the location of the actor, and then removing itself from the list of active events, something like this:

+ bomb : Hidden, Immovable 'unexploded bomb/cylinder' 'bomb'
"It's a fat, round-nosed cylinder with tail fins, on a couple of which
are painted tiny swastikas. "
discover ()
{
inherited;
new SenseFuse (self, &explode, 3, self, sight);
daemonID = new PromptDaemon (self, &daemon) ;
}
daemon ()
{
if (bomb.isIn(nil))
{
switch (gPlayerChar.location)

{

case streetJunction: "Loud Bang!'"; break;
case road : "Distant Bang!"; break;
case shop : "Muffled Bang!"; break;

}

daemonID.removeEvent;
daemonID = nil;

}
}

daemonID = nil

This approach works, and could also have been used to handle the case where the player character is in the same
location as the bomb when it goes off. We shall, however, explore a different approach that models the situation in a
less ad-hoc way, and which perhaps is more easily extensible. We'll be making the explosion of the bomb create a
SoundEvent that can be heard someway off; but to allow the SoundEvent to be sensed at other locations we need to
connect them by a SenseConnector. For this purpose we'll assume that sound is the only thing that will be transmitted
(we can't actually see, smell or feel what's going on near the bomb unless we're there), and that as the other locations
are a little way away, any sound should be passed as distant rather than transparent. We can then define our
SenseConnector thus:

SenseConnector, Intangible
transSensingThru (sense)
{
if (sense==sound)
return distant;
else

Page 164

TADS 3 Tour Guide
return opaque;

}

locationList = [londonStreet, streetJunction, road, shop]

’

Note that we need to give the SenseConnector some other class as well. Here we make it an Intanglible, since it
doesn't represent any tangible object in the game, but in other situations you might want your SenseConnector to be a
physical object like a door, wall, or window that actually connects two locations. We use the locationList property to list
the locations we want connected (not all of which we have defined yet).

If you try to run this as things are, apart from the undefined location, you'll encounter another problem: when the
player character moves north from londonStreet to streetJunction s/he can now still hear the ticking from the bomb.
This probably isn't very realistic - one might expect to hear the bomb exploding from some way away, but not ticking.
Fortunately, this is very easy to fix: because we have defined the SenseConnector as passing sounds through a
distance, it won't pass any whose soundSize is set to small (as opposed to medium - the default, or large). We thus
just need to add this refinement to the definition of our Noise object:

++ Noise 'tick/ticking' 'ticking'

sourceDesc = "It's ticking. "

descWithSource = "The ticking is coming from the bomb. "

descWithoutSource = "The ticking seems to be coming from the pile of rubble. "
hereWithSource = "The bomb is ticking. "

hereWithoutSource = "A ticking comes from the direction of the rubble. "
displaySchedule = [1]

soundSize = small

13.11. SensoryEvent

So far we have added a means of passing sound from the bomb to neighbouring occasions, but we've yet to create a

sound to pass. Unlike the ticking of the bomb, which is continuous (until the bomb detonates), its explosion is one-off

(and dramatic). We can represent it with a SensoryEvent, or more specifically, a SoundEvent (one of the sublasses of
SensoryEvent along with SightEvent and SmellEvent). The definition of the SoundEvent could hardly be simpler:

explosionEvent : SoundEvent;

There are a couple of properties you can play with on this class if you really want to: the sense property contains the
sense in which the event is observable, but it's fairly obvious that for a SoundEvent this can only be sound (as the
library indeed defines it); to define an event as a SoundEvent and change its sense property to smell would be
perverse, confusing, and, well, pretty senseless. You might have occasion to define something different here if you
wanted an event making use of a different kind of sense you had defined yourself, such as a burst of microwaves to
be picked up by a radar receiver. The other property of interest is notifyProp, which contains a pointer to the property
to be notified (i.e. the method to be called) on all objects in range of the event. For a SoundEvent this is defined as
¬ifySoundEvent. Again there is no real need to change it; if you had a large number of SoundEvents which might
affect the same group of objects you might want to give them all a different notifyProp so that they'd call different
methods, but there's no need to do this, since (as we shall see shortly) the notifySoundEvent method (or the
corresponding methods for SmellEvents and SightEvents) can tell from their parameters what event has triggered
them, so its probably best to leave this property alone unless you're creating handling for a new kind of SensoryEvent
(such as a custom RadiationEvent).

In order to make a SensoryEvent do anything, we simply need to call its triggerEvent(source) method, where source
is the object that's notionally the source of the sound, light or smell that the event represents. In the case of our bomb,
we simply need to put the appropriate call in the bomb's explode method:

+ bomb : Hidden, Immovable 'unexploded bomb/cylinder' 'bomb'
"It's a fat, round-nosed cylinder with tail fins, on a couple of which
are painted tiny swastikas. "
discover ()
{
inherited;
new SenseFuse(self, &explode, 3, self, sight);

}
Page 165

TADS 3 Tour Guide
explode ()
{

"The bomb explodes, the blast sending chunks of masonry flying in all
directions, one piece of strikes you square on the head. ";
if (gPlayerChar.isIn(location))

endGame (ftDeath) ;
respiratorBox.movelnto (location);
respiratorBox.moved = nil;
explosionEvent. triggerEvent (self) ;
movelInto (nil);

}

cannotTakeMsg = 'You must be joking! '
cannotPushMsg = 'That might set it off. '
cannotMoveMsg = 'It\'s probably safest to leave it just where it is. '

’

This is all very well, but in order for this to have any effect, we need to have something that responds to the event
when it's triggered. Such a something is called a SoundObserver (or SightObserver for a SightEvent, or
SmellObserver for a SmellEvent). This is defined as a mix-in class, so we could, for example, mix it in with a
SecretFixture in each of the locations where we want the explosion to be reported (i.e. all those joined to londonStreet
by the SenseConnector). When the triggerEvent method is called, it should in turn call the notifySoundEvent(event,
source, info) method of every SoundObserver object within hearing range. The event parameter is the SoundEvent
that's just been triggered, while the source is the object that's the notional source of the sound (i.e. the source
specified as the parament in the explosionEvent.triggerEvent(source) call).

As a first (but erroneous) attempt, we might try something like this in streetdunction:

+ SoundObserver : SecretFixture
notifySoundEvent (event, source, info)
{
if (source == bomb)
"\nThere is a loud explosion and a cloud of dust from the street to
the south as the bomb explodes amongst the rubble. "

}

’

The test for source being bomb is not strictly necessary here, since there's only one SoundEvent that's going to be
fired round here, but it's a good idea to include it, not only to show how one might apply such a test, but also in case
at some later stage you wanted to add more SoundEvents, and needed to be sure that the right one was going to be
responded to on any occasion.

But there are two things wrong with the definition we have given above (though you'll only encounter one of them if
you try it). The first is that the message will never be displayed (this is the problem you'll encounter), and the second is
that, if it were displayed, this wouldn't necessarily be what we wanted, since what we actually want is to see a
message appropriate to the location in which the player character is located at the time, not every message from
every SoundObserver that defines a response to this SoundEvent no matter where the player character is located.
Fortunately, we can quite readily fix both problems at once.

The reason no message is displayed may seem quite mysterious, and very hard to track down it, for example, you try
to trace what's happening through the debugger. It is, in fact, that explosionEvent.triggerEvent is called by a
SenseFuse, and the SenseFuse makes sure that no messages are displayed unless the object associated with the
fuse is in scope for the player character. The whole chain of events from exploding the bomb to triggering
explosionEvent.triggerEvent to calling notifySoundEvent takes place in the context of the SenseFuse, and so the
message displayed in notifySoundEvent will not be displayed. The solution is to have notifySoundEvent use
callWithSenseContext to set up the visual sensory context of the location where we've placed the SoundEvent. This
also ensures that the player sees only the message revelant to the location of the player character. Since we shall be
deploying several of these receptors it's worth putting this extra bit of complication into a class which we can reuse as
needed:

class BangObserver : SecretFixture
notifySoundEvent (event, source, info)
{
if (source==bomb)
callWithSenseContext (self, sight, {: bang});
}
bang = "Bang! "

Page 166

TADS 3 Tour Guide
Note that BangObserver does not inherit from SoundObserver. There's no reason why it shouldn't, but also no reason

why it needs to, since all SoundObserver does is define an empty notifySoundEvent method (which we're redefining
here anyway).

Now all we need to do is to add a BangObserver in streetJunction:

streetJunction : OutdoorRoom 'Street Junction' 'the junction'
"The street from the south meets another running east-west. A short way down
to the street to the east a fire crew is fighting a blazing fire. "

south = londonStreet

east : FakeConnector { "After taking a few steps east you recall that
discretion is the better part of valour and decide to keep out of the
way of the fire crew. "}

west = road

+ BangObserver
bang = "\nThere is a loud explosion and a cloud of dust from the street to
the south as the bomb explodes amongst the rubble. "

At the same time we add a new connexion to the west, so we need to define the appropriate location:

road : OutdoorRoom 'Road' 'the road'

"The road runs west from the junction passed a row of terraced houses and shops.
It seems strangely deserted, perhaps because the air-raid has sent everyone
scuttling into shelters. A shop suffering bomb-damage stands open to the north. "

east = streetJunction

west : FakeConnector { "After a few steps down the street you decide that
wandering too far round the city in the middle of an air-raid might be
bad for your health. "}

north = shop

in asExit (north)

+ BangObserver
bang = "\nThere is a muffled explosion from the southeast. "

+ Enterable ->shop 'shop' 'shop'
"The damage to the shop, probably a grocer, looks substantial; not only have the
windows been blown in but much of the surrounding brickwork with it. From the
outside, at least, the shop looks abandoned. "

And then, in turn, the interior of the shop:

shop : Room 'Grocery Shop' 'the grocery shop'

"The interior of the shop confirms the impression conveyed by the exterior: the
bomb damage here is substantial; broken glass, shattered masonry and dust
cover the floor, and the stock has all been removed, leaving nothing but a
bare counter. "
out = road
south asExit (out)

+ BangObserver
bang = "There's a sudden explosion from somewhere nearby outside, bringing
more dust cascading from the ceiling. "

+ Decoration 'broken shattered glass/masonry/dust/debris' 'debris'
"Shards of glass mingle with bits of brickwork all over the floor, and a
patina of coarse white dust covers everything. "

The usefulness of the SoundEvent/SoundObserver implementation now becomes apparent, since one can keep
adding suitable BangObserver objects within each location that might be affected.

Page 167

TADS 3 Tour Guide

The purpose of this trip to London in the Blitz is to collect not one but two gas masks; two will be needed because our
intrepid player character will eventually be given a travelling companion (Sarah) who'll also need a gas mask if she is
to venture into Hell Fire Cavern with him (let's assume it's a him from now on, for ease of reference). The two gas
masks will be functionally identical, and there's no reason to suppose that two gas masks picked up in wartime
London will look very different from each other, so rather than impose any artificial distinctions, we'll create a GasMask
class and make two interchangeable instances of it:

class GasMask : Wearable, Hidden 'gas mask/respirator/gas-mask/gasmask
*masks*gasmasks*respirators'
'gas mask'

"It's an ungainly-looking thing with round glass circles for seeing through
and a kind of cylindrical snout to fit over nose and mouth, all held together
by a black rubber face-mask. "

isEquivalent = true

dobjFor (Wear)

{

verify ()
{
inherited;
if (gActor.isMasked)
illogicalNow ('{You/he} {is} already wearing a gas mask. ');

We set the isEquivalent property to true to indicate that all members of the class are interchangeable (like the
candles and matchsticks we implemented earlier), and override the verifyDobjWear method to allow only one gas
mask to be worn by any one Actor at a time. The definition of the gas mask found in the respiratorBag then becomes
simply:

respiratorBox : OpenableContainer 'small (respirator) khaki bag/box' 'khaki bag'
"The square bag is made of coarse khaki fabric and has a pair of carrying straps.
bulkCapacity = 4
initSpecialDesc = "A small khaki bag lies in the street, perhaps dislodged from the
rubble by the recent explosion. "

"

’

+ gasMaskl : GasMask
discovered = true

Note that we have renamed it gasMask1 to distinguish it from the second gas mask we'll now add (continuing the
definition of the shop):

+ RearContainer, Fixture 'long wooden counter' 'counter'
"Like everything else round here, the long wooden counter is bare apart from a
thick covering of dust. "

’

++ gasMask2 : GasMask
initSpecialDesc = "A gas mask lies abandoned on the floor behind the counter.

"

It may seem strange to derive GasMask from the Hidden class as well as from the Wearable class when we actually
want only one of the gas masks to be hidden. But this is the only way we can make both gas masks exactly
equivalent, and it only involves us in adding a single line of code (revealed = true) to the definition of gasMask1.

This now leaves us with another task: changing the definition of Actor.isMasked (aren't you glad now we defined it so
we'd only have to change it one place) to allow any gas mask to do the job:

modify Actor
canSmell (obj)
{
if (isMasked)
return nil;
else
return inherited(obj);

}

/* if the first parameter is nil or not supplied, return the first gas mask

Page 168

TADS 3 Tour Guide

* among the actor's possessions. If the first parameter is true,
* return the gas mask (if any) that is being worn by the actor.
*/
maskObj ([params])
{
local worn = nil;
if (params.length>0)
worn = params[1];
foreach(local cur in contents)
{
if (cur.ofKind (GasMask) && (worn==nil || cur.isWornBy (self)))
return cur;
}

return nil;

}

isMasked
{
return maskObj (true) != nil;
}
We could have used a slightly simpler definition such as isMasked = (gasMaskl.isWornBy (self) ||

gasMask2.isWornBy (self)), but this approach would soon become tedious if we decided to add any more gas
masks, so we have used a more general approach that checks whether there's any GasMask object among the

actor's possessions that's currently being worn by the actor. This would allow us to add more gas masks into the
game if we wanted them without having to worry about doctoring the definition any further. We have defined

maskObj() as a separate method rather than incorporating it directly into isMasked(), since we'll be needed maskObj()
later.

Page 169

TADS 3 Tour Guide

14. Attachables

14.1. Attachables - Overview

On occasion the need will arise to attach one object to another. Quite often this can lead to complex situations. If |
attach the rope to the chair and walk off carrying the rope, what should happen? Does the rope break, the chair topple
over, or the rope constrain me from walking any further? If | attach the red lego brick to the yellow one and pick up the
red brick, does it become detached from the yellow one or bring it along with it? If | plug the iron into the wall and
attempt to walk away from it, does the plug pull out of the socket, the iron out of my hand, or am | brought up short?

Because the possible permutations are so complex the TADS 3 library can hardly cover every eventuality, but rather
than leave the game author with nothing but a few basic verb definitions, it does provide a few classes that at least
provide a framework for attaching and detaching objects:

Attachable
NearbyAttachable
Permanent Attachable
PermanentAttachmentChild

PlugAttachable

14.2. Attachable

The Attachable class makes the handling of attaching and detaching objects to and from each other a bit easier, but it
does also leave quite a bit to the game author to implement. Where the Attachable class helps is first in making the
ATTACH command symmetrical (so that ATTACH A to B is handled the same as ATTACH B to A) and secondly in
providing a framework for specifying precisely what happens when two objects are ATTACHEd or DETACHed. To
work with Attachables successfully, it is important to understand both this framework, and also what handling the
Attachable class does and does not itself provide.

Firstly, an Attachable object defines an attachedObjects property which contains a list of the other objects to which it
is attached. This list is automatically maintained on both objects involved in an ATTACH X TO Y or DETACH X FROM
Y command. Moreover the method isAttachedTo(obj) can be used to test whether an Attachable object is currently
attached to obj.

An Attachable object also defines a method canAttachTo(obj) which determines whether the Attachable can be
attached to obj. For this to return true, obj must also be an Attachable, but one that overrides canAttachTo(obj) to
allow it to be attached to the first Attachable. To make this doubtless confusing explanation a bit clearer, this means
that if you want to be able to ATTACH X TO Y then both X and Y must be of class Attachable, and either X or Y must
override canAttachTo(obj) to return true when obj is the other object. So you must either override X.canAttachObj(obj)
to return true when obj==Y, or override Y.canAttach(obj) to return true when obj==X. If X is the only object that can be
attached to Y, then you could do this with:

X : Attachable, Thing ...
canAttachTo (obj) { return obj == Y; }
Note that Attachable is a mix-in class, so we must also add Thing or some Thing-derived class to the class list.

The canDetachFrom(obj) method is similar, except that it generally allows X to be detached from Y unless either
X.canDetachFrom or Y.canDetachFrom has been overridden to prevent it, or either X or Y is of class
PermanentAttachment (or isPermanentlyAttachedTo(obj) has been overridden with some other condition).

In the event of either attachment or detachment being disallowed, the method explainCannotAttachTo(obj) or
cannotDetachMsgFor(obj) is called; these can be overridden with customised messages if desired.

Page 170

TADS 3 Tour Guide

It is important to realize (a) that this is about as far as the library takes it and (b) that this is never enough. As things
stands, if you bring X into a location and attach it to Y which you find there, you can walk all over the map carrying X
while X is considered attached to Y and Y remains where it is (and out of scope until to return to its location). It is hard
to conceive of a situation where this would be what you actually want.

Because the library can hardly guess what you do want (should Y be dragged along with X, or detach itself from X, or
what?) it is left up to you to define the rest of the behaviour, but the library does define four (by default empty)
methods to help you do this: handleAttach(other), moveWhileAttached(movedObj, newCont),
handleDetach(other) and travelWhileAttached(movedObj, traveler, connector). The first of these is called on
both objects in an ATTACH command (so need normally be defined on one of them) and the last on both objects in a
DETACH command (so again need only be defined on one of them); moveWhileAttached(movedObj, newCont) is
called on movedObj and every object attached to it when movedObj is about to be moved into newCont. The final
case arises, for example, when walking into a room, attaching X to Y, and then walking away with X, since while X
remains held by the player character, it does not change container; although in the plain English sense X is being
moved when you walk away with it, it is not being moved in the sense that would result in a call to
moveWhileAttached. To deal with this situation we use travelWhileAttached.

Not all attachment relationships are symmetrical. If we attach a red wire to a green wire it doesn't much matter if the
red wire is described as attached to the green wire or the green to the red, but if we attach a flag to a battleship, we
expect to see the flag described as attached to the battleship, not the battleship to the flag. To handle this Attachable
provides an isMajorltemFor(obj) method, which should return true on the major item when obj is the minor item; for
example you might define

battleship : Attachable, Enterable

isMajorItemFor (obj) {return obj==flag; }

But before we get too deep into such complications, we'll start will a very simple case. You'll recall that back on the
north side of the lake we had a platinum ring and a diamond. We'll suppose that the diamond can simply be clipped
back into the ring to form a diamond ring; in this case we simply want ATTACH DIAMOND TO RING or ATTACH
RING TO DIAMOND to replace both the diamond and the ring with a single diamond ring object. We could put the
handling on either object; we'll use the ring:

ring : Attachable, Thing 'platinum ring/band/recess' 'platinum ring'

"It's a plain platinum band, with a small empty recess on one side. "

location = dressingTable.subContainer

canAttachTo (obj) { return obj==diamond; }

handleAttach (other)

{

diamondRing.moveInto (gActor) ;
movelInto (nil) ;
other.movelInto(nil) ;
"{You/he} snap{s} the diamond back into its setting on the ring. ";

}
getFacets () { return [diamondRing]; }

’

Note that we start by adding Attachable to the start of ring's class list. When the diamond is attached to the ring we
move the diamond ring into the actor performing the action, since it's reasonable to suppose that this is where it would
end up unless the actor made a point of putting it down again. Finally, we ovrrride getFacets so that if we have just
referred to the ring without the diamond, the pronoun 'it' will refer to the diamond ring after the transformation. We then
need to make minimal changes to the diamond object:

diamond : Attachable, Thing 'sparkle' 'sparkle' @pathEnd
"It looks like a genuine diamond - and a valuable one too, exquisitely cut
and multifaceted. "
iobjFor (CutWith) { verify() { } }
initSpecialDesc = ""

éégamed = nil
getFacets () { return [diamondRing]; }
Now we'll try something more complicated. Some way back we left our intrepid adventurer stranded on the south side

Page 171

TADS 3 Tour Guide

of the chasm - or least, with no further to go once he's got there. We'll now suppose that the tunnel to the south leads
to a steel door that can only be operated by pressing a button that's concealed behind a loose stone. The only
problem is that the wires have been cut, so before the button will work it must be detached from its fitting and repairs
made to the wires. We'll implement the button and its container as Attachables, and the wires as NearbyAttachables.

The first step is to provide the passage south from the chasm and the location by the steel door:

chasmLedge : DarkRoom 'Ledge of Chasm' 'the ledge of the chasm'
"A deep, wide chasm splits the ground immediately to the north of this
narrow ledge, while a dark tunnel runs south. Another tunnel can be
seen leading north from the far side of the chasm. "
north = deepChasm
inRoomName (pov)
{
return 'on the ' + (pov.isIn(deepChasm) ? 'south' : 'far') + ' ledge of the chasm';

}

south = tunnelFromChasm

+ tunnelFromChasm : ThroughPassage 'dark tunnel' 'dark tunnel'
"The dark tunnel runs south from here. "
noteTraversal (traveler) { "You walk a long way down the tunnel. "; }

’

tunnelEnd : DarkRoom 'End of Tunnel' 'the end of the tunnel'
"The tunnel from the north comes to an abrupt end before
<<blankSteelDoor.isOpen ? 'a large opening into a well-1lit
corridor to the south' :' a blank steel door'>>. There is nothing
else here but the rough stone walls. "
north = tunnelToChasm
south = blankSteelDoor

brightness = (blankSteelDoor.isOpen ? 3 : 0)
roomParts = [defaultFloor, defaultCeiling, tunnelEndWestWall, defaultEastWall]
+ tunnelToChasm : ThroughPassage -> tunnelFromChasm 'tunnel' 'tunnel'

"T