
GETTING STARTED IN TADS 3 
 

(version 3.0.16) 
 

A Beginner's Guide 

By 
 

ERIC EVE 



2

CONTENTS 
 

CONTENTS ............................................................................................................................................2 

PREFACE ...............................................................................................................................................4 

CHAPTER ONE - INTRODUCTION..................................................................................................5 
1. GENERAL INTRODUCTION.................................................................................................................5 
2. CREATING YOUR FIRST TADS 3 PROJECT ........................................................................................7 

a. Installing the compiler ................................................................................................................7 
b. Creating the new project.............................................................................................................7 
c. Compiling your project ...............................................................................................................9 
d. Running your game...................................................................................................................10 
e. Adding multiple source files to the project................................................................................10 
f. The project file's contents explained..........................................................................................11 

3. PROGRAMMING PROLEGOMENA .....................................................................................................12 
a. Overview of Basic Concepts......................................................................................................13 
b. Objects ......................................................................................................................................13 
c. Assignment Statements ..............................................................................................................15 
d. Referring to Methods and Properties........................................................................................17 
e. Functions and Methods .............................................................................................................18 
f. Conditions -  If Statements.........................................................................................................19 
g. The Switch Statement ................................................................................................................20 
h. Properties Containing Objects and Lists ..................................................................................21 
i. Nested Objects ...........................................................................................................................22 

4. FURTHER PROGRAMMING CONCEPTS AND CONSTRUCTS................................................................23 
a. Comments, Identifiers and Scope ..............................................................................................24 
b. Loops.........................................................................................................................................25 
c. Inheritance ................................................................................................................................30 
d. Afterword ..................................................................................................................................37 

CHAPTER TWO - A SAMPLE GAME.............................................................................................38 
1. A VERY SIMPLE GAME ...................................................................................................................38 
2. ADDING ITEMS TO THE GAME.........................................................................................................41 
3. MAKING THE ITEMS DO SOMETHING ..............................................................................................42 

CHAPTER THREE - STARTING OUT AGAIN - DEFINING ROOMS AND OBJECTS..........45 
1. STARTING A NEW GAME.................................................................................................................45 
2. DEFINING OUR FIRST ROOM............................................................................................................46 
3. ADDING AN OBJECT TO THE ROOM.................................................................................................49 
4. TYING UP SOME LOOSE STRINGS ...................................................................................................51 

CHAPTER FOUR - MOVING AROUND .........................................................................................55 
1. BASIC TRAVEL................................................................................................................................55 
2. CLIMBING THE TREE – REMAPPING BEHAVIOUR ............................................................................57 
3. MAKING LIFE MORE PROBLEMATIC ...............................................................................................57 
4. REWARDING THE EFFORT ...............................................................................................................62 
5. CONTROLLING THE ACTION............................................................................................................69 

a. Verify() ......................................................................................................................................70 
b. Check()......................................................................................................................................74 
c. Action()......................................................................................................................................75 
d. PreCond() .................................................................................................................................76 
e. Remap().....................................................................................................................................77 
f. Messages....................................................................................................................................79 
g. Other Responses to Actions.......................................................................................................83 

6. SUMMARY AND RECAPITULATION ..................................................................................................85 



3

a. Connectors ................................................................................................................................85 
b. Rooms........................................................................................................................................86 
c. Object Types & Properties........................................................................................................86 
d. Dealing with Actions.................................................................................................................87 
e. Miscellaneous............................................................................................................................88 

CHAPTER FIVE - CHARACTER BUILDING ................................................................................89 
1. SETTING THE SCENE .......................................................................................................................89 
2. A BASIC BURNER............................................................................................................................91 
3. ENDING THE GAME .........................................................................................................................93 
4. THE ART OF CONVERSATION ..........................................................................................................95 
5. WHAT'S IN A NAME?.....................................................................................................................103 

CHAPTER SIX - EXPANDING THE HORIZONS........................................................................107 
1. DOORS AND WINDOWS .................................................................................................................107 
2. CROSSING THE STREAM................................................................................................................110 
3. BURYING THE BOOTS....................................................................................................................114 
4. CALLING A SPADE A SPADE ..........................................................................................................118 
5. QUICK SUMMARY .........................................................................................................................122 

CHAPTER SEVEN - PUSHING THE BOAT OUT........................................................................123 
1. LET THERE BE LIGHT ....................................................................................................................123 
2. ROW MY BOAT.............................................................................................................................129 
3. GOING SHOPPING..........................................................................................................................131 
4. HANDLING CASH TRANSACTIONS.................................................................................................138 

a. Providing Goods and Money...................................................................................................138 
b. Making the Sale.......................................................................................................................141 
c. Generalizing Financial Transactions......................................................................................146 

5. QUICK SUMMARY .........................................................................................................................149 
CHAPTER EIGHT - FINISHING OFF...........................................................................................150 

1. FILLING IN SOME GAPS.................................................................................................................150 
a. Atmosphere Strings .................................................................................................................150 
b. Sensory Emanations................................................................................................................151 
c. Settling the Score.....................................................................................................................152 
d. Destination Names ..................................................................................................................153 
e. Stopping Sally's Misbehaviour ................................................................................................154 
f. Finishing the Boat ...................................................................................................................155 
g. Other Suggestions – including an MultiInstance ....................................................................156 

2. COUNTING THE CASH ...................................................................................................................158 
3. LOOKING THROUGH THE WINDOW ...............................................................................................162 
4. EASING TESTING AND DEBUGGING...............................................................................................166 
5. WHERE TO GO FROM HERE ............................................................................................................171 

APPENDIX A – ACTION MESSAGE PROPERTIES...................................................................173 

INDEX.................................................................................................................................................176 

 



4

Preface 
 
The first edition of Getting Started in TADS 3 was an attempt by one (then 

fairly novice) TADS 3 user to help others with some experience of programming IF 
systems to get up to speed on TADS 3. Since then, it has grown and developed as a 
result both of feedback from people who have used it, and of its author's attempts to 
make it increasingly accessible to those with little or no previous IF programming 
experience. In its present form it is intended to be used as a starting point for anyone 
wishing to learn to write Interactive Fiction using TADS 3. 

This guide has never been intended as a complete manual covering every 
aspect of the language and library; it is instead intended to introduce new users to the 
basics of the system. If you are new to TADS 3, the best way for you to get to grips 
with it is probably for you to work through this guide and gain a reasonably secure 
understanding of its contents before moving on to the other documentation that covers 
the language and library in more depth.  

A considerable amount of new material has been added to this edition of 
Getting Started, most of it derived from documentation orginally written by Mike 
Roberts. Mike's technical article Creating your First TADS 3 Project has been 
incorporated into Chapter 1. The 'Programming Prolegomena' section of Chapter 1 
has been supplemented with a 'Further Programming and Concepts' section (mainly 
derived from the TADS 2 manual and TADS 3 language documentation) in order to 
complete the coverage of fundamental programming concepts the novice needs to 
know. Moreover, Chapter 2 is essentially a TADS 3 version of Chapter 1 of the 
TADS 2 manual. It is hoped that the inclusion of this additional material will greatly 
reduce, if not eliminate, the need to consult multiple documents while using this guide 
to start learning TADS 3. 

Once you are reasonably comfortable with what Getting Started has to teach, 
however, you will need to move on to other documentation (and practice using the 
system) to start gaining mastery. The TADS 3 Tour Guide provides a much more 
thorough overview of the TADS 3 library, and can be used as a tutorial to follow that 
contained herein. The System Manual describes the TADS 3 language in far more 
depth than is possible here, and you will find yourself needing to consult it frequently 
(reading through it at some stage might be no bad idea too, though there'll be parts 
you'll probably want to skip till you need them), while the TADS 3 Library Reference 
Manual provides a complete reference to the library. Finally, the Technical Manual 
covers a number of issues not dealt with in this guide, and goes into far more detail on 
some that are. 

It remains only to say three things: first to record my appreciation for the 
enormous amount of effort that Mike Roberts has put into the development of TADS 
3, and for his comments and suggestions on earlier drafts of this guide; second to 
record my thanks for his permission to incorporate parts of his own work into this 
guide; and finally to thank all those readers of previous versions of this guide for their 
feedback and suggestions, which will hopefully enhance its usefulness for those that 
follow. 

 
Eric Eve 

Harris Manchester College 
Oxford 

March 2007   



5

Chapter One -   Introduction 
1. General Introduction 

 
If you are reading this Beginner's Guide to using TADS 3 you will presumably 

already know what Interactive Fiction is, so I shall not offer an explanation here. You 
will presumably already have found your way to Mike Roberts's TADS pages 
(http://www.tads.org), will probably have downloaded the TADS 3 author's kit and 
tried it out, and may perhaps have some familiarity with another IF language such as 
TADS 2 or Inform. If you are still trying to work out how to install the TADS 3 
compiler or do anything with it, the instructions in the section on "Creating your First 
TADS 3 Project " below should get you started. On the other hand, if you are already 
familiar with the basics of the TADS 3 language you can skip the remaining sections 
of this chapter and maybe the next chapter as well. I shall not in any case spend a 
great deal of time explaining programming concepts such as functions, operators, 
statements, classes and objects, but the final two sections of this chapter provide a 
basic introduction to the way these are implemented in TADS 3 and to the 
programming concepts needed to follow this guide. Chapter Two will then show how 
to implement a very short sample game.  

The approach taken in the remainder of this guide will be to introduce various 
features of TADS 3 through developing a more substantial game. Inform users will 
recognize the genesis of this game in the Inform Beginner's Guide by Roger Firth and 
Sonja Kesserich (who have very kindly allowed me to borrow both Heidi and her 
forest), although rather than following the IBG's route of illustrating features of the 
language through three successive games, I shall stick with the same game, The 
Further Adventures of Heidi, and increase its complexity from chapter to chapter. The 
complete source code of the finished game, heidi.t, should be packaged in the zip file 
with this guide (if you downloaded it separately) or with the TADS 3 documentation 
set. 

Chapter Three will explain in some detail how to define a room and a single 
object within that room for the game we'll be developing together throughout the 
remainder of the guide. Things will become rather more complicated in Chapter Four 
when we look at the use of various kinds of connector to move between rooms, and at 
the same time introduce a number of other features of the TADS 3 library and 
language so we can program a couple of basic puzzles (how to get to the top of a tree 
and find a diamond ring in a bird's nest). The main focus of Chapter Five will be the 
programming of an NPC (non-player character), in this case a friendly charcoal-
burner who turns out to be the owner of the missing ring. Subsequent chapters will 
place a further series of obstacles between Heidi and the ring so that we can sample 
the excitements of lockable doors, dark caves, and a pair of conveniently buried 
Wellington boots (to mention a few) and thereby introduce a number of other features. 
By Chapter Seven we shall be sending Heidi on a boat trip down to the shops (well, a 
shop), and trying to figure out how to handle buying and selling. Chapter Eight will 
wrap things up with some suggestions on how to put some finishing touches to the 
game, a look at a different ways we could have tackled a couple of the problems we 

http://www.tads.org/


6

encountered, some suggestions on how to make testing and debugging slightly less 
painful, and some pointers on where to go next. 

It follows that this Beginner's Guide is not really intended for bedtime reading 
(although it may turn out to be an excellent cure for insomnia!); it is intended rather to 
be used sitting at your computer while you type the example code (though I can't stop 
you copying and pasting it) and see how it works when you compile it, and, even 
better, try experimenting and implementing things for yourself when invited to do so. 
If you'd like a sneak preview of where it's all going, by all means compile the heidi.t 
file that should have come with this Guide and play through the game – just don't 
expect it to be a masterpiece of IF! 

This is by no means a formal manual, but I shall employ a few typographical 
conventions. Text in the Times New Roman font (like this) will be used for the bulk 
of the text. Text in bold will generally represent what a player might type at the 
TADS 3 command prompt when playing a game (e.g. north or eat the baked 
banana). Text in the Courier Font (like this) will be used for code or fragments of 
code (e.g. name = 'Fred' ). 

Note that both the Guide and the heidi.t file have been written to be 
compatible with TADS 3.0.16. If you have an earlier version of TADS 3 installed, 
please update it to the latest version before following the instructions in this guide, 
otherwise you may keep coming across things that do not work as they are described 
(as well as finding you get a raft of errors when you try to compile heidi.t).1 If by the 
time you read this you have a version of TADS later than 3.0.16, please check the 
revision history notes that come with it in case there are any changes that you need to 
implement to the code in heidi.t, and the code given in the remainder of this Guide to 
get things to work. 

Exactly how you approach this Getting Started guide may depend both on 
your temperament and your previous experience (either with other systems for writing 
Interactive Fiction or with programming in general). If you feel you want a reasonably 
sound grasp of the findamentals of the TADS 3 language before seeing how to write a 
game in it, then you'll probably want to read the remainder of this chapter. If, on the 
other hand, you'd rather get straight on with the business of seeing how a game is 
written, you might prefer to skip straight to Chapter Two and only return to the last 
two sections of this chapter if and when you feel the need to clarify the programming 
concepts employed in the course of this guide. If you'd prefer a compromise solution, 
you could read the "Programming Prolegomena" section below, but leave the final 
"Further Programming Concepts and Constructs" section till later. But whatever you 
do, please try to master the basics fully before trying to do something more complex; 
some new users of TADS 3 become frustrated because they try to run before they 
have learned how to walk. 

Finally, do feel free to experiment as you work your way through the material 
that follows; you will almost certainly learn more if you try adapting the example 
code given to try things out than if you simply copy it all with your brain in neutral. It 
may often, however, be a good idea to clean out your experimental code before going 
on to the next step in this Guide, just in case your bright ideas clash with mine.  

 

1 This may not be strictly true; everything in this guide is fully compatible with any version of TADS 
since TADS 3.0.10, mostly compatible with TADS 3.0.9, more or less compatible with TADS 3.0.8 
and so on; but ideally, you should work with the latest version, and the older your version is, the more 
incompatibilites there will be. 



7

2. Creating your First TADS 3 Project 

If you're looking at TADS 3 for the first time, and you're trying to figure out 
how to create your own game, things might look a little intimidating - there are all 
these library files, header files, object directories, strange binary files, and so on. How 
do you get started creating your own game? Do you have to make copies of all of 
those library files? Where do you install everything?  

This section will help you get started. Fortunately, it's not nearly as hard as it 
looks to set up a new game project. It's true that a TADS 3 game project involves a lot 
more files than a typical TADS 2 game does, but the compiler is designed to manage 
most of the extra complexity for you. Once you've set up the compiler properly, you 
can practically forget about everything except your own source files.  
a. Installing the compiler 

If you're using Windows, there's almost nothing to this - just download the 
TADS 3 Author's Kit, which consists of a single .EXE file that installs everything. 
Open the installer executable (by double-clicking on it from wherever you 
downloaded it to), and step through the install screens. Everything should be self-
explanatory. When the install is finished, you're all set.  

If you're using Windows, but you plan to run the command-line compiler 
manually from a DOS box rather than using Workbench, there's one more step: you 
need to set the PATH environment variable to include the directory where you 
installed TADS 3. In the DOS box, you can do this with a command like so:  

 
path "%path%;c:\program files\tads 3" 

 
Of course, you should substitute the actual directory location if it's different. 

Note that Windows makes you set the PATH variable each time you open a new DOS 
box. If you're using Windows NT, 2000, or XP, you can set the path permanently (so 
that you don't have to set it each time you start a new DOS box) in the Advanced tab 
of the System Properties dialog.  

For Macintosh and Unix systems, refer to the README file that comes with 
your system's download package for instructions.  
b. Creating the new project 

i) Creating a project with Workbench 
If you're using Windows, run TADS 3 Workbench (by selecting it from the 

"Start" menu group you selected during the installation process).  
 

• By default, Workbench will show you a "welcome" dialog asking you if you 
want to open an existing game or create a new one. Click on the button for 
creating a new game.  

• If you've turned off the "welcome" dialog, then select "New Project" from the 
Workbench "File" menu.  

 
In either case, this will display the New Project Wizard. Just step through the 

wizard screens to tell Workbench the name and location for your new project files. 



8

Workbench will automatically create all of the necessary files for your project, and 
it'll even compile it for you right away.  

ii) Creating a project manually 
If you're not using Workbench (either because you're not using Windows, or 

because you prefer working with the DOS command prompt on Windows), you'll 
have to create your project files manually. Fortunately, this isn't very hard - you just 
need to create two files and one subdirectory.  

First, choose the folder where you'll put your project files. The files and 
subfolder you'll create should go in this folder.  

Second, create a subfolder called "obj". If you're on Unix, for example, you'd 
type mkdir obj.

Third, create a file for your game's initial source code. Use whatever name you 
like for this file, but it should end in ".t" - you could call it "mygame.t", for example. 
You can create the file by opening your favorite text editor, creating a new file with 
your chosen filename, then copy the text below into the new file. Save the file when 
you're finished.  

 
#include <adv3.h> 
#include <en_us.h> 
 
gameMain: GameMainDef 
 initialPlayerChar = me 
;

versionInfo: GameID 
 name = 'My First Game' 
 byline = 'by Bob Author' 
 authorEmail = 'Bob Author <bob@myisp.com>' 
 desc = 'This is an example of how to start a new game project. ' 
 version = '1' 
 IFID = 'b8563851-6257-77c3-04ee-278ceaeb48ac' 
;

firstRoom: Room  
 'Starting Room'  
 "This is the boring starting room." 
;

+ me: Actor 
;

(Note that the included file <en_us.h> is for the US English version of the 
library.2 If you're working with a version of the library for a different language, you'd 
include a different header file for that language.)  

Fill in those quoted parts under the line reading "versionInfo:GameID" with 
your own information.  Everything should beself-explanatory, except that last line that 
starts "IFID =". That long, random-looking string of letters and numbers is exactly 
what it appears to be - a long, random string of letters and numbers. Well, almost: it's 
actually composed of random "hexadecimal", or base-16, digits, i.e. 0 to 9 plus A to 
F.  The purpose of this random number is to serve as a unique identifier for your game 
when you upload it to the IF Archive.  The format is important, but the individual 
 
2 Although it’s officially the US English version, in practice a UK English version would be virtually 
identical, and I imagine the same would apply to other anglophone countries. 



9

digits should simply be chosen randomly.  For your convenience, tads.org provides an 
on-line IFID generator at http://www.tads.org/ifidgen/ifidgen.

Fourth, create your "project file," which contains the build instructions for the 
project. You can call this file anything you want, but the name should end in ".t3m" - 
call it "mygame.t3m", for example. Using your text editor, copy the text below into 
the new project file and save it.  

 
-DLANGUAGE=en_us 
-DMESSAGESTYLE=neu 
-Fy obj -Fo obj 
-o mygame.t3 
-lib system 
-lib adv3/adv3 
-source mygame 
 

One thing: if you called your source file something other than "mygame.t", 
you should change that last line to match. Note that you can leave off the ".t" suffix - 
you don't have to leave it off, but doing so will ensure that your project file will work 
on operating systems that have unusual file naming rules that don't allow dots in 
filenames. You'll probably also want to change the line that reads "-o mygame.t3" to 
use your alternative name as well. (Note that the ".t3" suffix on this line is needed, if 
you do indeed want to use a .t3 suffix; the compiler won't add this suffix 
automatically, because it can't assume that you want to include a suffix at all. That 
makes the project file a little less portable, but it gives you complete control over the 
name of your final game file. That extra control is important to a lot of people, 
because the final game file is what you'll distribute to people playing your game.)  

That's it - you're done. There's nothing more to copy around, nothing more to 
fix up in the file. This is important: you do not have to fix up any directory paths in 
the file, no matter where you installed the compiler. You do not have to copy of any 
of the system files into your project folder (you don't have to copy the library files, or 
the system include files, or anything else). Just create the file exactly as shown above, 
and it'll work on any system that has a TADS 3 compiler, no matter where you 
installed the compiler.  

If you want to know what all of the gibberish in the .t3m file means, see the 
project file's contents explained later in the chapter.  
c. Compiling your project 

If you're running Workbench, this is easy - just press the F7 key. (You can 
also select the "Compile for Debugging" command on the "Build" menu, or click the 
equivalent toolbar button.)  

If you're not running Workbench, go to your system's command prompt, make 
sure your current working directory is the directory containing your project files, and 
type  

 
t3make -d -f mygame 

 
Substitute the name you actually gave your .t3m file, if you called it 

something other than "mygame.t3m".  

http://www.tads.org/ifidgen/ifidgen


10

d. Running your game 

If you're running Workbench, once again, this is easy - press the F5 key (or 
select the "Go" command on the "Debug" menu, or click the equivalent toolbar 
button).  

If you're not running Workbench, at your system command prompt, type  
 

t3run mygame 
 

But you should check the README file that came with your system's 
download package - the program name might not be the same everywhere.  
e. Adding multiple source files to the project 

You can arrange your game into multiple source files, if you want. Doing so 
can help keep things organized, and also keeps the individual files more manageable 
by keeping the sizes down.  

How you organize your source code across files is up to you. Most people like 
to break things up geographically within the game, so that all of the code related to a 
particular room is close together; you might give each room (along with its contents) 
its own source file, or you might put several rooms from a single area in one source 
file. Complex NPC's might merit their own separate source files, especially if they 
have extensive conversation code. These are just examples, though - everyone has 
their own organization style, so do what makes sense to you.  

Adding source files is easy - but if you're an experienced TADS 2 user, this is 
one area where you should unlearn the TADS 2 way of doing things. In particular, 
you should not put your game together using a central .t file that #include's lots of 
other .t files. Instead, follow these simple steps to add your extra source files.  

First, create your new source file - let's call it "newfile.t".  
Second, copy the following text into your new file to get started:  
 

#include <adv3.h> 
 #include <en_us.h> 
 

Note that you should include those lines at the start of every source file in your 
game. Those ".h" files contain definitions of things like macros and templates that 
must be included in every source module that uses the standard library.  

Third, edit your project's .t3m file. Add this line after the existing "-source 
mygame.t" line:  

 
-source newfile 

 
That's all you have to do. When you add code to your new file, be sure to add 

it after the #include lines you copied into the file.  
For the full details on how this works, see the section on separate compilation 

in the Technical Manual.



11

f. The project file's contents explained 

We promised earlier that we'd provide an explanation of the gibberish in the 
.t3m file. You should be able to get quite far sticking to the recipes above, so feel free 
to skip this section if you don't feel you need the details right now.  

To refresh your memory, here again is the project file we created:  
 

-DLANGUAGE=en_us  
-DMESSAGESTYLE=neu 
-Fy obj -Fo obj 
-o mygame.t3 
-lib system 
-lib adv3/adv3 
-source mygame 
 

The contents of the project file are simply build instructions to the compiler. 
You could put exactly the same list of options on the compiler's command line. You 
almost certainly wouldn't want to, since it's an awful lot to type in, especially since 
you'd have to type it every time you compiled your game; but you could enter it all on 
the command line if you really wanted to. Putting the options in a .t3m file makes 
things a lot easier by capturing the options for easy access every time you compile - 
just point the compiler to the .t3m file and you're done. The options file also makes 
the option syntax a little easier to read by letting you break up the options over several 
lines, rather than typing them all on a single command line.  

Because the project file's contents are all simply compiler options, you can get 
a list of all of the possible options, along with brief explanations, by running the 
compiler without any arguments - just type t3make at your system's command prompt 
and hit return. You can find more detailed information in the TADS 3 System Manual 
that accompanies the Author's Kit; look in the section on compiling and linking.  

Let's go through the options from our example file one by one.  
-DLANGUAGE=en_us - this defines a preprocessor symbol (also known as a 

"macro"). The symbol is named LANGUAGE and has the value "en_us". This is 
important because it tells the adv3 library which language version you want to include 
in the build.  

-DMESSAGESTYLE=neu - this defines another preprocessor symbol, this time 
named MESSAGESTYLE and with the value "neu". This tells the adv3 library which 
version of the English message file you want to include in the build. "neu" selects the 
"neutral narrator" style; this is currently the only message style included in the 
standard library, but more might be added in the future.  

-Fy obj - this tells the compiler to put all of your "symbol files" in the "obj" 
subfolder of the main project folder. A symbol file is an intermediate binary file that 
the compiler produces as part of the build process; a symbol file corresponds to a 
source file, and its name will be the same as the name of the source file, but with the 
".t" suffix replaced by ".t3s".  

-Fo obj - this tells the compiler to put all of your "object files" in the "obj" 
subfolder of the main project folder. An object file is another kind of intermediate 
file; an object file is named based on the corresponding source file, with the ".t" suffix 
replaced by ".t3o".  

Note that -Fy and -Fo are separate options. They happen to appear on the same 
line in the .t3m file, but that's not important; line breaks in a .t3m file are treated the 
same as spaces, so you can put options on separate lines or together on the same line, 
separated by spaces, and the effect will be exactly the same.  



12

-o mygame.t3 - this tells the compiler to write the final compiled game file to 
"mygame.t3" in the main project folder.  

If you want to put this in a separate subdirectory, you can do that. Create the 
subfolder - let's call it "exe". Then prefix the game file's name with the folder name 
and a slash - so, -o exe/mygame.t3. Always use a slash, no matter what your local 
operating system's conventions; the compiler will automatically convert the slash to 
your local conventions. This ensures that the .t3m file is portable to other operating 
systems, because every version of the compiler knows to read the "slash" format and 
convert it to the correct local format.  

-lib system - this tells the compiler to include the "system" library in the 
build. The system library contains some low-level definitions that almost every TADS 
3 program will want to use, even when not using the standard adventure library.  

-lib adv/adv3 - this includes the standard adventure game library in the 
build. The standard adventure library is called "adv3", and it's in the "adv3" subfolder 
of the main system library folder. We just explained for the "-o" option that you 
always use a slash as the path separator in a .t3m file, and the same is true here. Even 
if you're running on a Macintosh, use the slash; even if you're running on Windows, 
use the slash - do not change it to a backslash ("\").  

-source mygame - this includes your initial source file. The compiler will 
automatically add the ".t" suffix. As we explained earlier, this makes the .t3m file 
more portable, because it allows the same file to work even on systems that don't 
allow periods in filenames; on such systems, the compiler would use some other 
appropriate local convention, such as using a different suffix separator, or not using a 
suffix at all.  

One final note: the order of these options is somewhat important. The "-lib" 
and "-source" options must be grouped at the end of the file, after all of the other 
options. The order of the other options isn't important, as long as they all precede the 
first "-lib" or "-source" option.  

In addition, the relative order of the "-lib" and "-source" options is important: 
you should always put the general system libraries first, and your own source files 
last. This matters only because of the "modify" and "replace" statements in the TADS 
language: a module that uses "modify" or "replace" has to come after the module that 
contains the original definition being modified or replaced. It should be pretty obvious 
that the general system library modules, which don't know anything about your game, 
aren't going to attempt to modify or replace any objects in your game files; your 
source files might want to modify or replace things in the system libraries, though. So, 
the order is pretty natural - general base files first, specializations last. The adv3 
library is more specialized than the base system library, so "system" comes before 
"adv3/adv3"; your source files are more specialized than the adv3 library, so they 
come after it. If you were using any third-party library extensions, you'd probably put 
them after adv3 but before your own source files.  

 
3. Programming Prolegomena 

Many readers may prefer to skip this section altogether and dive straight into 
the more interesting business of writing a game. But if you are completely new to 
programming in TADS (or TADS 3) you may appreciate a brief introduction to some 
of the basic ground rules. This section makes no attempt to give a comprehensive or 



13

systematic account of the TADS 3 language, but simply introduces some of the things 
you will be meeting in this Getting Started Guide. 

 
a. Overview of Basic Concepts 

Writing a game in TADS 3 requires two different styles of programming: 
declarative and procedural. Declarative programming is largely a matter of defining 
objects and setting their properties (see below). Setting the properties of objects 
means giving them values; a value may typically be a number, a string (i.e. a piece of 
text) or another object. Since adv3, the library that comes with TADS 3, is so rich, 
you can achieve a great deal in TADS 3 with declarative programming alone. 

Procedural programming involves writing a sequence of statements. Each 
statement is an instruction that you want your game to carry out. Statements may 
typically assign a value to a variable or property, or call a function or method. A
variable is a kind of temporary store for a value; a property can act as a more 
permanent store. 

With one or two exceptions we needn’t worry about here, statements can 
appear only in functions and methods; there needs to be some context in which they 
are executed. Similarly, variables can only be used in functions and methods; all 
TADS 3 variables are thus local variables (see further below). 

A function is a kind of wrapper for a group of related statements you want to 
be executed together. An individual function is usually designed to carry out one 
specific task (although it may be a highly complex task involving many individual 
steps). The process of telling TADS 3 that we want a function to carry out its task is 
known as calling or invoking the function (the two terms are synonymous). 

A method is similar to a function, but is associated with a particular object. A
function can be invoked (i.e. called) simply using its name (e.g. the statement foo() 
will invoke the function named foo), whereas invoking a method generally requires 
specifying the name of the object to which it belongs as well (e.g. foo.bar() would 
invoke the bar method of the foo object). The exception is when a method is invoked 
from another method of the same object. 
b. Objects 

Broadly speaking, most programming in TADS consists of defining objects 
(although you may also find yourself defining classes, functions, and one or two other 
things, but we'll leave those to one side for the moment). An object may be an object 
in the physical sense of something that appears in your game world, such as a spade, a 
cottage, or a shopkeeper, but it may also be a more abstract construct designed to do 
some job or other in your code. Examples of some of abstract objects we shall be 
encountering include ActorStates that help describe how an actor behaves under 
particular circumstances, and TopicEntries that define how an actor responds to 
various questions. 

Objects generally belong in some form of containment hierarchy. For physical 
objects this usually represents the notional containment relationships in your game 
world. At the top of the hierarchy are the rooms (locations) that make up the map of 
your world. Each individual room may contain a number of objects, such as tables, 
chairs, rocks, boxes and the like, as well as actors such as the player character (PC) 
and non-player characters (NPCs). These in turn may 'contain' further objects (and so 



14

on). For example, if there is coin inside one of the boxes, the coin is contained by the 
box, just as the box is contained by the room. 'Containment' is, however, a slightly 
more general relation than this example might suggest. For example, if a pen is sitting 
on the table, then the table is considered to be the pen's container. Anything held (or 
worn) by an actor is considered to be contained by the actor. So, for example, if the 
PC picks up one of the rocks, that rock's container changes from the room to the PC. 
If the PC then puts one of the boxes on the table, the box is now 'contained' by the 
table instead of directly by the room (although it remains indirectly contained by the 
room). At this point the coin is contained by the box, but is also 'in' the table and the 
room. In TADS 3 the immediately container of an object is always specified in its 
location property. 

Containment may also be used to relate abstract objects. For example, menu 
items may be contained in a menu, or an actor may 'contain' abstract objects such as 
ActorStates and TopicEntries (these will be explained in due course) as well as 
physical objects being carried around by the actor. 

Typically an object definition begins with the name of an object, followed by a 
colon, followed by a class list, followed by a list of its properties and methods:
myObj : Thing 
 name = 'boring object' 
 changeName 
 {

name = 'even more boring object.'; 
 }
;

In this definition name is a property of myObj, changeName is a method and Thing 
is the class (or superclass or base class) of the object. The functional difference 
between a property and a method is that properties hold values while methods contain 
code: a list of one or more statements that do something when the method is invoked. 
The syntactical difference is that the name of a propery is separated from its value by 
an equals sign (=) while that of a method is not, the statements that make up the 
method being enclosed in braces { }.  

A further point of syntax to note is the use of the semicolon. This is used (a) to 
terminate the object definition, and (b) to terminate statements. It is not used to 
terminate property definitions (a very, very easy mistake to make). Although they 
look very similar, the line name = 'boring object' is a property definition that means 
"define a name property on myObj and set its initial value to 'boring object'", while the 
statement within the changeName method, i.e. name = 'even more boring object.'; is 
an assignment statement that means "change the value of the already existing value of 
the name property to 'even more boring object'."3

Note that you could use braces instead of a terminating semicolon to define 
the extent of the object definition; the foregoing object definition could then have 
been written: 

 
myObj : Thing 
{

name = 'boring object' 
 changeName 
 {

name = 'even more boring object.'; 
 
3 TADS 2 users should note that the TADS 3 assignment operator is always = and not :=; TADS 3 
follows C conventions and not Pascal conventions throughout. 



15

}
}

Which you use is up to you, but this Guide will use the terminating semicolon. 
 

c. Assignment Statements 

An assignment statement is probably one of the most common kinds of 
statement that you will come across in TADS 3 programming. It always takes the 
form: 

 
lvalue = expression;  
 
Where lvalue can be either an object property or a variable (which we'll talk 

about in just a bit). An expression can be as simple as a constant value or the name of 
another variable, a function call or method name (assuming the function or method 
returns a suitable value), or a more complex expression involving a number of the 
foregoing elements joined together with operators, for example: 

 
myName = 'my '  + name; 
 
As a statement this would assign the value 'my boring object' to the variable 

myName (assuming that name started off by holding the value 'boring object'). Note that 
an expression can also be used as the value of a property (in which case it should be 
enclosed in parentheses), so that if we made myName a property of myObj, we could 
definine it thus: 

 
myObj : Thing 
 name = 'boring object' 
 changeName 
 {

name = 'even more boring object.'; 
 }

myName = ('my ' + name) 
;

This definition would mean that myName contained 'my boring object' until the 
changeName method was invoked, and would contain 'my even more boring object' 
afterwards (we'll talk about invoking methods presently). In fact, it is, except for its 
appearance, exactly the same as writing: 

 
myName  { return 'my ' + name; } 

When it is used with (single-quoted) strings, + is thus a concatenation 
operator. With numbers it does what you would expect, i.e. add them together, e.g.: 

 
myNumber = 3 + 4;

Would assign the number 7 to myNumber. All the numbers we'll be dealing with 
in this Guide will be integers (i.e. whole numbers); TADS 3 does possess a BigNumber 
class that allows you to work with real numbers (i.e. numbers including a fractional 



16

part, such as 3.141594), but most Interactive Fiction can get by quite happily with 
standard integer arithmetic. 

Other common arithmetic operators include -, * and / (subtract, multiply and 
divide) which do much what you would expect (note that the division is integer 
division, so that myNumber = 3 / 4 would set myNumber to zero, while myNumber = 10 
/ 4 would set it to 2). Less obvious but almost just as common and useful are the 
various shortcut operators that provide a more concise way of coding common 
operations. There are several of these, but the only ones we need deal with here are 
+=  -=  ++ and --. It is quite common in programming to want to add or subtract a 
number from the current value of a variable or property and store the result in the 
same variable or property, e.g.: 

 
myNumber = myNumber + 4; 
myNumber = myNumber – 2; 
 
If myNumber started out at 6, then after the first line was executed, myNumber 

would be changed to 10, and after the second line was executed, it would be changed 
to 8. This could be written more succinctly as: 

 
myNumber += 4; 
myNumber -= 2; 
 
This may look a litle strange at first, but it's a highly convenient feature once 

you get the hang of it. Another one is the use of ++ or -- to increase or reduce a 
property or variable by one. Thus intead of writing myNumber = myNumber + 1 or even 
myNumber+=1 one could write simply myNumber++; likewise one could use myNumber-- 
in place of myNumber = myNumber – 1.5

In these examples, myNumber could be either a property or a variable. In TADS 
3 programming properties tend to be used for semi-permanent storage of information 
you need to be available to the whole program, while variables are local in scope and 
temporary in duration, used, for example, to hold the results of some intermediate 
calculation (there are some library defined quanties of the form gWhatsit that look 
like global variables, but these are simply shorthand ways of referring to some 
commonly used property of a library object). Being local in scope means that the 
variable is available only to code within the same block (usually the same method or 
function) as that in which the variable is defined; being temporary in duration means 
(to a first approximation) that the variable only retains its value for that particular 
invocation of the function or method. A variable must be declared with the keyword 
local in the block in which it appears, and may optionally be initialized in the same 
statement in which it is initialized, e.g.: 

 
4 Mathematically speaking real numbers should be contrasted with imaginary or complex numbers, 
such as 3 + 2.4i, but that’s a complication we’ll ignore here. 
5 For a full account of these operators you need to be aware of the difference between the postfix 
operator myNumber++ and the prefix operator ++myNumber, the difference being that in the former 
case myNumber is incremented after its value is used, and in the latter it is incremented beforehand. 
This would become revelant in a situation where, for example, you wrote x = 3 + myNumber++ or x = 
3 + ++myNumber. Assuming myNumber started out at 2, the first example would result in x becoming 
5 and myNumber becoming 3, while the second would result in myNumber becoming 3 and x 
becoming 6. At this introductory stage this is not worth worrying about too much, but is something you 
will need to master if you plan to make a lot of use of these operators. 



17

local x; 
local numberOfCabbageEaters = 12; 
 

d. Referring to Methods and Properties 

Variables, and indeed statements, are generally used within object methods 
and global functions. But how are the functions and methods used in turn? Often the 
library will expect a method to be defined on an object you create and will invoke 
(call) it under the appropriate circumstances; moreover, you can often use a method in 
place of a property when you want to do something more complex than you can do 
with a property; then, when the library tries to (say) display the value of the name 
property it may quite happily use the value returned by the name method instead. If 
you've defined a method myMethod on an object myObj you can invoke it from 
anywhere in your code by writing the statement: 

 
myObj.myMethod; 
 
or 
 
myObj.myMethod(); 
 
Similarly, you can reference the value of the myProperty property of myObj 

with myObj.myProperty. Note the use of the dot (.) notation here, since you will be 
using it a lot. 

In TADS 2 (or Inform 6), if you wanted to reference myObj.myMethod() or 
myObj.myProperty from another property or method of myObj you would typically 
write self.myMethod() or self.myProperty(), where self is a special keyword 
meaning "the current object". There are still situations where you may need to use the 
self keyword in TADS 3 but this is no longer one of them; instead, in this situation, 
you could write simply, myMethod() or myProperty. To make this clearer, we'll give an 
example: 

 
myObj : Thing 
 name = 'boring object' 
 changeName 
 {

name = 'very boring object'; 
 }

myName = ('my ' + name) 
;

myOtherObject : Thing 
 name = 'exciting object' 
 describeName 
 {

local dName = 'This is an ' + name + ', unlike '; 
 myObj.changeName; 
 dName +=  myObj.myName; 
 say(dName); 
 return dName; 
 }
;

In this example, a call to myOtherObj.describeName should result in the display 
of the message "This is an exciting object, unlike my very boring object"; moreover, 



18

if you wrote a statement such as msg = myOtherObj.describeName, not only would 
"This is an exciting object, unlike my very boring object" be displayed, but the string 
'This is an exciting object, unlike my very boring object' would be stored in the 
variable msg.6 This comes about because the last statement of describeName tells the 
method to return a value (in this case the value of the local variable dName), and this 
value will be treated as the value of the method if it is used in an expression. 

 
e. Functions and Methods 

Functions may return values in similar ways. The purpose of using a function 
is typically to perform an often-used calculation that is not related to any particular 
object, e.g.: 

 
function salesTax(salesValue, taxPercent) 
{

return (salesValue * taxPercent)/100; 
}

. The function keyword used here is optional but perhaps makes the code 
clearer, although it is more usual to omit it in TADS 3 code. Note that in this example, 
unless we're using the BigNumber class, salesValue and taxPercent must both be 
integers (e.g. 120 meaning, say, 120 pence or 120 cents, and 15 meaning 15%). More 
to the point, note that salesValue and taxPercent are the two formal parameters of 
this function, which means that they're placeholders for whatever values we want to 
pass to the function when we call it. So, for example, if from somewhere in the 
program we called taxPennies = salesTax(120, 15); taxPennies would be assigned 
the value 18. Methods may also take parameters, so for example we could define: 

 
myObj : Thing 
 baseName = 'object' 
 myName (qualifier) 
 {

return 'my ' + qualifier + ' ' + baseName; 
 }
;

Note the use of extra string spaces so that myObj.myName('boring') returns 'my 
boring object' rather than 'myboringobject'. Note also that we can also define a 
method (or function) that takes no arguments by using an empty argument list thus: (). 
So, for example, we could have defined: 

 
myObj : Thing 
 name = 'boring object' 
 changeName() 
 {

name = 'very boring object'; 
 }

myName = ('my ' + name) 
;

And it would have meant precisely the same as the earlier definition without 
the empty () after changeName. Which you use is entirely up to you. 
 
6 For this distinction between single and double quoted strings, see p. 51 below. 



19

f. Conditions -  If Statements 

Often one will want to use methods and functions to perform something a bit 
more complex than we've shown here. One of the basic requirements of any 
programming language is to be able to test for conditions and act according to the 
results. For example, we might want myObj to declare itself as either a boring object or 
exciting object on the basis of a property used as a flag: 

 
myObj : Thing 
 name 
 {

if(exciting) 
 return 'exciting object'; 
 else 
 return 'boring object'; 
 }

exciting = nil 
 myName = ('my ' + name) 
;

The new construction introduced here means "if the condition in parentheses 
following the keyword 'if' is true, carry out the statement on the following line, 
otherwise carry out the statement following the 'else' keyword". TADS 3 defines two 
special values, true and nil which mean true and false (N.B., it's very easy, 
especially if you're used to using another language, to type 'false' when you mean 'nil'; 
TADS 3 uses nil since it has other uses beyond Boolean false7). Since the property 
exciting contains nil myObj.name will return 'boring object'; if exciting were later 
changed to true (or to any non-zero number), myObj.name would then return 'exciting 
object'. 

The condition in an if statement can be much more elaborate than the name of 
a property that evaluates to nil or true. For example, suppose that instead of a 
boolean (nil or true) exciting property we defined a numeric excitement property, 
with the rule that the object only becomes exciting if its excitement property exceeds 
10. We should then have written the test as if(excitement > 10). Alternatively, we 
might have decided that the object value was only exciting if its excitement value was 
exactly 123, in which case the condition would be written if(excitement == 123).

Note that this test for equality uses a double equals sign (==), and must be 
written this way if this is what you mean. It's very easy to write something like 
if(excitement = 123) by mistake, in which case the compiler will give you a 
warning, because it almost certainly isn't what you meant.8

You may also want to combine tests using the logical operators and, or and 
not, which in TADS 3 are defined with &&, || and ! respectively. For example if we 
have defined a boring property on myObj, we might have wanted the exciting test to 
be: 

 
7 For example, a property or method returns a nil value if is undefined, game objects can be moved into 
nil to move them out of the game world, and in some situations a value of nil can be equivalent to an 
empty string. 
8 Once again TADS 2 users should note the difference from TADS 2 here; this is another case where 
there is no longer the option to use Pascal-style syntax. 



20

if((!boring && excitement > 12) || excitement == 123) 
 
This would mean, if excitement is equal to 123 or if it's greater than 12 and 

boring is not true. Note the use of grouping parentheses to resolve any potential 
ambiguities in the order in which these conditions are evaluated. 

There is no need to use the else clause at all, if you don't need it. But what 
happens if you need more than one statement to be executed if something is true, 
and/or a whole set of statements to be performed otherwise? In this case, we'd use 
braces {} to group the statements, for example: 

 
if((!boring && excitement > 12) || excitement == 123) 
 {

myIndefiniteArticle = 'an'; 
 return 'exciting object'; 

}
else 

 {
myIndefiniteArticle = 'a'; 

 return 'boring object'; 
 }

g. The Switch Statement 

It is possible to nest if… else… statements to any required depth, so that one 
could, for example, have the following: 

 
if(excitement == 0) 
 name = 'very boring object'; 
else if (excitement == 1) 
 name = 'boring object'; 
else if (excitement == 2) 
 name = 'moderately boring object'; 
else if (excitement < 5) 
 name = 'vaguely boring object' 
else if(excitement < 10) 
 name = 'not too boring object'; 
else 
 name = 'exciting object'; 

But the trouble with this is that it can quickly become confusing to keep track 
of which else is meant to match which if (this can be alleviated by using braces to 
group the code the way you want, though that can lead to messy-looking and verbose 
code). In some cases this may be the only way to achieve the effect you want, but in 
this particular case, where we are simply testing the value of a single variable, it is 
often easier to use a switch statement; in this case the equivalent switch statement 
would be: 

 
switch(excitement) 
{

case 0: name = 'very boring object'; break; 
 case 1: name = 'boring object'; break; 
 case 2: name = 'moderately boring object'; break; 
 case 3: 
 case 4: name = 'vaguely boring object'; break; 
 case 5:  
 case 6: 
 case 7: 
 case 8: 



21

case 9: name = 'not too boring object'; break; 
 default : name = 'exciting object'; 
}

Note the use of the break; statements to stop the test 'falling through' to other 
matches. Since we want the test to fall through if excitement is 3, 5, 6, 7 or 8 we do 
not define a break statement for those cases. So, for example, if excitement is 6 the 
switch statement will execute the statements for all the cases following case 6 until it 
encounters a break; this has the desired effect of setting name to 'not too boring 
object'. The default case defines what happens if none of the preceding cases is 
matched. 

The switch() statement is not restricted to matching numbers, it can also 
match (single-quoted) strings, objects, lists, Boolean values (true or nil) or 
enumerators (which we'll meet again below). Again, the case value need not be 
expressed as a constant of one of these types, so long as it is an expression that 
evaluates to a constant value of one of these types. 

 
h. Properties Containing Objects and Lists 

This brings us to the final introductory point: so far our examples of properties 
and variables have all been of ones that contain either numbers, strings, or Boolean 
values (true or nil); but properties and variables can also contain other data types such 
as objects, lists, enumerators and function pointers, and although we shall be meeting 
few enumerators and function pointers in what follows, properties containing objects 
and lists will be rather more common. The concept of a property or variable 
containing an object is really no more complicated than that of having them refer to 
strings or numbers. For example if we had two objects, myObj1 and myObj2, we could, 
say, use the assignment statement obj = myObj2 and then use obj to refer to myObj2.
This may seem a bit pointless at first, but it could be useful if we didn't know in 
advance which object obj was going to be, and we wanted to write general code that 
could work equally well with a number of objects. To take a trivial example, suppose 
we wrote the following function: 

 
function showName(obj) 
{

say(obj.name); 
}

This definition would then allow us to call showName(myObj1) to display 
myObj1.name, showName(myObj2) to display myObj2.name and so on. This example is so 
trivial that it may still seem pointless, but even in a slightly more complex case the 
value may start to become apparent: 

 
function talkAbout(obj) 
{

local msg = 'My '; 
 msg += obj.name; 
 msg += ' is really very '; 
 if(obj.excitement<10) 
 msg += 'dull.'; 
 else 
 msg += 'interesting.'; 
 say(msg); 
}



22

Perhaps an even more common use of assigning objects to properties is where 
other objects need to keep track of them. For example, if I have an object (say 'ball') 
inside another object ('bag'), then the location property of the ball can keep track of 
where the ball is by being set to the bag object. If the ball is then moved to the tennis 
court the location property of the ball object could be set to the tennisCourt object to 
keep track of it. 

At first sight, it may seem that doing it the other way round wouldn't work so 
well, since, say, using bag.contents to keep track of what's in the bag would only 
allow one object to be in the bag at the time. In fact this is an example of where one 
would use a list value. A list is basically a list of items (of any of the valid types, 
including other lists) enclosed in square brackets and separated by commas, e.g.: 

 
bag.contents = [ball, coin, banana, horseshoe] 
 
To find out whether something's in a list one can use its indexOf method; e.g. 

bag.contents.indexOf(ball) would be 1; bag.contents.indexOf(banana) would be 3, 
and bag.contents.indexOf(elixirOfLife) would be nil.  

 
i. Nested Objects 

The previous section only scratches the surface of TADS 3 lists; to find out 
more, look up lists in the System Manual that comes with the TADS 3 Author's Kit. 
We'll conclude with a rather different kind of list to illustrate one last point, the use of 
nested objects in TADS 3. 

Suppose we have a ball that appears to change colour randomly when we look 
at it. We might define it like this: 

 
ball: Thing 'ball' 'ball' 
 "When you look at it, it looks <<colour>>. " 
 colour  { return colourList.getNextValue(); } 
;

colourList: ShuffledList 
 valueList = ['red', 'green', 'blue', 'violet', 'white',  
 'black', 'orange', 'indigo'] 
;

The purpose of a ShuffledList is to return one of its values randomly, without 
repeating a value until it has used them all. It's a bit like shuffling a pack of cards, 
then taking one in turn until all have been used, then reshuffling the pack and starting 
again. But in order to function this way a ShuffledList needs to be a separate object, 
not only with a list of values (its valueList property) but also a method 
(getNextValue) that returns the next shuffled value. In order to define the varicoloured 
ball object, therefore, we also need to define a separate colourList object. While this 
is far from catastrophic, it can be a little inconvenient, since code that helps to define 
the behaviour of one object is spread into another; the two objects might in time get 
separated in your code, or the presence of the second object might mess up the 
containment hierarchy in some way. This is where a nested object could come in 
handy. 

As an intermediary step, note that a property can contain a reference to an 
object; for example, we could have written: 



23

ball: Thing 'ball' 'ball' 
 "When you look at it, it looks <<colour>>. " 
 colour  { return colourList.getNextValue(); } 
 colourList = colourListObj 
;

colourListObj: ShuffledList 
 valueList = ['red', 'green', 'blue', 'violet', 'white',  
 'black', 'orange', 'indigo'] 
;

And this would work just the same (although it appears a little more verbose). 
The colour method now refers to the colourList property which in turn refers to the 
colourListObj object. The way we could make this more compact is to turn the 
colourListObj object into an anonymous object defined directly on the colourList 
property: 

 
ball: Thing 'ball' 'ball' 
 "When you look at it, it looks <<colour>>. " 
 colour  { return colourList.getNextValue(); } 
 colourList: ShuffledList 
 {

valueList = ['red', 'green', 'blue', 'violet', 'white',  
 'black', 'orange', 'indigo'] 
 }
;

Not only is this more concise, but it has the advantage of keeping all the code 
together in one object. The ShuffledList has now become an anonymous nested 
object. All nested objects are anonymous, because they have no name: colourList is 
not the name of the ShuffledList object here, it's the name of a property of ball; the 
ShuffledList can nevertheless be referred to as ball.colourList, since it is the value 
of ball's colourList property. Note that while an ordinary object definition may 
either be terminated with a semicolon or enclosed in braces, the braces ({}) form must 
always be used with a nested object, as here. 

This may seem a bit strange and convoluted at first, but you'll find the use of 
anonymous nested objects is a powerful and common feature of TADS 3 
programming, so it will be as well to become familiar with it. 

 
4. Further Programming Concepts and Constructs 

We have only scratched the surface of the TADS 3 language here, but further 
details are available in the System Manual, and in the meantime we have covered 
most of the basic features of the language that you need to follow this Guide. A few 
more will be introduced as we go along. There are, however, a few more fairly basic 
TADS 3 programming concepts we haven't covered yet, and as you'll probably need 
them sooner rather than later they're introduced here. It is not necessary to master 
these in order to use the rest of this Guide, however, so you may prefer to skip this 
section for now and get on with the more interesting business of discovering how to 
construct your first TADS 3 game, returning to this section later on if you need to. 

 



24

a. Comments, Identifiers and Scope 

i) Comments 
Outside of a quoted string, two consecutive slashes, //, indicate that the rest of 

the line is a comment. Everything up to the next newline is ignored.  Alternatively, C-
style comments can be used; these start with /* and end with */; this type of 
comment can span multiple lines.  

Examples: 
 // This line is a comment.  
 

/* 
 This is a comment 
 which goes across 
 several lines. 
 */  

 

ii) Identifiers 
Identifiers must start with a letter (upper or lower case), and may contain 

letters, numbers, dollar signs, and underscores. Identifiers can be up to 39 characters 
long. Upper and lower case letters are distinct (so that, for example, cloakroom, 
Cloakroom and CloakRoom are three different identifiers). 

iii) Scope of Identifiers and Local Variables 
All objects and functions are named by global identifiers. No identifier may be 

used to identify different things; that is, no two objects can have the same name, an 
identifier naming a function can't also be used for an object, and so forth. 

Property names are also global identifiers. A name used for a property can't be 
used for a function or object, or vice versa. However, unlike functions and objects, the 
same property name can be used in many different objects. Since a property name is 
never used alone, but always in conjunction with an object, the TADS compiler is 
able to determine which object's property is being referenced even if the same name is 
used in many objects. 

Function arguments and local variables are visible only in the function in 
which they appear. It is permissible to re-use a global identifier as a function 
argument or local variable, in which case the variable supersedes the global meaning 
within the function. However, this is discouraged, as it can be a bit confusing. 

Local variables in functions and methods must be declared with the keyword 
local before they are used. Local variable declarations can appear anywhere within a 
code block. A local variable definition that appears in the middle of a code block 
creates a variable that is in scope from that point in the code block to the closing brace 
of the code block. (TADS 2 only allowed local variable declarations at the start of a 
code block.)  

You can define local variables for the current code block. This is done with a 
statement such as this: 

 
local identifier-list ;  

 
The identifier-list has the form: 



25

identifier [ initializer ] [, identifier-list ] 

An initializer, which is optional, has the form: 
 
= expression 

where the expression is any valid expression, which can contain arguments to 
the function or method, as well as any local variables defined prior to the local 
variable being initialized with the expression. The expression is evaluated, and the 
resulting value is assigned to the local variable prior to evaluating the next initializer, 
if any, and prior to executing the first statement after the local declaration. Local 
variables with initializers and local variables without initializers can be freely 
intermixed in a single statement; any local variables without initializers are 
automatically set to nil by the run-time system.  

The identifiers defined in this fashion are visible only inside the function or 
method in which the local statement appears (actually, the situation can be slightly 
more complex than this when anonymous functions are involved - see the section on 
Anonymous Functions in the System Manual for the full story). Furthermore, the local 
statement supersedes any global meaning of the identifiers within the function or 
method. 

An example of declaring local variables, using multiple local statements, and 
using initializers is below. 

 
f(a, b) 

 {
local i, j;                 /* no initializers */ 

 local k = 1, m, n = 2;      /* some with initializers, some without */ 
 local q = 5*k, r = m + q;   /* OK to use q after it's initialized */ 
 for (i = 1 ; i < q ; i++) 
 {

local x, y;               /* locals can be declared in any block */ 
 say(i); 
 }

}

b. Loops 

A common programming requirement – and one that can turn up quite 
frequently in TADS programming – is the need to repeat a statement or set of 
statements a number of times. This may either be a fixed number of times or, more 
commonly, a number of times determined by some condition, such as the number of 
objects in a set we wish to examine. For example at the start of the game we might 
want to go through every object in the game and ensure that it is has been added to the 
contents property of its immediately container (the library in fact does this for us). It 
would be tedious indeed to have to write code to do this on every single object that 
might be affected; it's far better to write a set of statements once and have that same 
set of statements executed for every relevant object in our game. A programming 
construct that accomplishes this sort of task is traditionally called a loop, and the 
TADS 3 language provides four types of loop: while, do-while, for and foreach. It 
also contains a number of statements to help control how loops function. 



26

i) While 
The while statement defines a loop: set of statements that is executed 

repeatedly as long as a certain condition is true. 
 

while ( expression ) statement 
 
As with the if statement, the statement may be a single statement or a set of 

statements enclosed in braces. The expression should evaluate to a number (in which 
case 0 is false and anything else is true), or a truth value (true or nil). 

The expression is evaluated before the first time through the loop; if the 
expression is false at that time, the statement or statements in the loop are skipped. 
Otherwise, the statement or statements are executed once, and the expression is 
evaluated again; if the expression is still true, the loop executes one more time and the 
cycle is repeated. Once the expression is false, execution resumes at the next 
statement after the loop. 

For example, suppose we had a custom class called Book and we wanted to 
loop through every Book in our game setting its hasBeenRead property to nil unless its 
author property refers to the Player Character. We could write: 

 
local obj = firstObj(Book); 
while(obj != nil) 
{

if(obj.author==gPlayerChar) 
 obj.hasBeenRead = true; 
 else 
 obj.hasBeenRead = nil; 
 obj = nextObj(obj, Book); 
}

ii) Do-While 
 
The do-while statement defines a slightly different type of loop from the while 

statement. This type of loop also executes until a controlling expression becomes false 
(0 or nil), but evaluates the controlling expression after each iteration of the loop. 
This ensures that the loop is executed at least once, since the expression isn't tested 
for the first time until after the first iteration of the loop. 

 
The general form of this statement is: 
 
do statement while ( expression ); 
 
The statement may again be a single statement or a set of statements enclosed 

in braces. The expression should again evaluate either to a number (in which case 0 is 
false and anything else is true), or a truth value (true or nil). 

 
For example, to calculate factorial n: 
 
factorial(n) 
{

local x = 1, res = 1; 
 do 

{
res = res * x; 



27

x++; 
}

while (x <= n); 
 return res; 
}

iii) For  
 
The for statement defines a very powerful and general type of loop. You can 

always use while to construct any loop you can construct with for, but the for 
statement is often a much more compact and readable notation for the same effect. 

 
The general form of this statement is: 
 
for ( init-expr; cond-expr; reinit-expr ) statement 

As with other looping constructs, the statement can be either a single 
statement, or a block of statements enclosed in braces. 

The first expression, init-expr, is the "initialization expression." This 
expression is evaluated once, before the first iteration of the loop. It is used to 
initialize the variables involved in the loop.  

The second expression, cond-expr, is the condition of the loop. It serves the 
same purpose as the controlling expression of a while statement. Before each iteration 
of the loop, the cond-expr is evaluated. If the value is true the body of the loop is 
executed; otherwise, the loop is terminated, and execution resumes at the statement 
following the loop body. Note that, like the while statement's controlling expression, 
the cond-expr of a for statement is evaluated prior to the first time through the loop 
(but after the init-expr has been evaluated), so a for loop will execute zero times if 
the cond-expr is false prior to the first iteration.  

The third expression, reinit-expr, is the "re-initialization expression." This 
expression is evaluated after each iteration of the loop. Its value is ignored; the only 
purpose of this expression is to change the loop variables as necessary for the next 
iteration of the loop. Usually, the re-initialization expression will increment a counter 
or perform some similar function. 

Any or all of the three expressions may be omitted. Omitting the expression 
condition is equivalent to using true as the expression condition; hence, a loop that 
starts "for ( ;; )" will iterate forever (or until a break statement is executed within 
the loop). A for statement that omits the initialization and re-initialization 
expressions is the same as a while loop. 

Here's an example of using a for statement. This function implements a 
simple loop that computes the sum of the elements of a list. 

 
sumlist(lst) 

 {
local len = length(lst), sum, i; 

 for (sum = 0, i = 1 ; i <= len ; i++) 
 sum += lst[i]; 
 }

Note that an equivalent loop could be written with an empty loop body, by 
performing the summation in the re-initialization expression. We could also move the 
initialization of len within the initialization expression of the loop. 



28

sumlist(lst) 
 {

local len, sum, i; 
 for (len = length(lst), sum = 0, i = 1 ; i <= len ; 
 sum += lst[i], i++); 
 }

You can define new local variables in the initializer part of a for statement by 
using the local keyword in the initializer. For example: 

 
for (i = 1, local j = 3, local k = 4, l = 5 ; i < 5 ; ++i) // ... 

 
This declares two new local variables, j and k, and uses the existing variables 

i and l. Note that l is not a new local, even though it comes after the local k 
definition, because each local keyword in a for initializer defines only one variable. 
Note also that an initial value assignment is required for each new local declared. 

The new locals declared in a for initializer are local in scope to the for 
statement and its body (this is the same rule that Java uses, although note that it 
differs from the (undesirable) way C++ works). The effect is exactly as though an 
extra open brace ("{") followed by a local statement for each new local appeared 
immediately before the for statement, and an extra close brace ("}") appeared 
immediately after the end of the body of the loop. 

 
iv) Foreach 

The foreach statement provides a convenient syntax for writing a loop over 
the contents of a collection, such as a List or a Vector. 

The syntax of the foreach statement is: 
 

foreach ( foreach_lvalue in expression ) body 
 

The foreach_lvalue specifies a local variable or other "lvalue" expression 
which serves as the looping variable. This can be any lvalue (any expression that can 
be used on the left-hand side of an assignment operator), or it can be the keyword 
local followed by the name of a new local variable; if local is used, a new local 
variable is created with scope local to the foreach statement and its body. 

The expression is any expression that evaluates to a Collection object (for 
which see the System Manual), such as a List or Vector value. 

The statement loops over the elements of the collection. For each element, the 
statement assigns the current element to the lvalue, then executes the body. 
Here's an example that displays the elements of a list. 
 

local lst = [1, 2, 3, 4, 5]; 
 foreach (local x in lst) 
 "<<x>>\n"; 
 

v) Break and Continue 
A program can get out of a loop early using the break statement:  
 
break;  

 



29

This is useful for terminating a loop at a midpoint. Execution resumes at the 
statement immediately following the innermost loop in which the break appears. 

The break statement also is used to exit a switch statement. In a switch 
statement, a break causes execution to resume at the statement following the closing 
brace of the switch statement. 

The continue statement does roughly the opposite of the break statement; it 
resumes execution back at the start of the innermost loop in which it appears. The 
continue statement may be used in for, while, foreach, and do-while loops. 

In a for loop, continue causes execution to resume at the re-initialization 
step. That is, the third expression (if present) in the for statement is evaluated, then 
the second expression (if present) is evaluated; if the second expression's value is non-
nil or the second expression isn't present, execution resumes at the first statement 
within the statement block following the for, otherwise at the next statement 
following the block. 

For example, suppose we want to loop through a player's possessions until we 
find one that is of class LightSource; we might do something like this: 

 
local obj; 
foreach(obj in gPlayerChar.contents) 
{

if(obj.ofKind(LightSource)) 
 break; 
}

The break and continue statements can optionally specify a target label. 
When a label is used with one of these statements, it must refer to a statement that 
encloses the break or continue. In the case of continue, the label must refer directly 
to a loop statement: a for, while, or do-while statement. The target of a break may 
be any enclosing statement. 

When a label is used with break, the statement transfers control to the 
statement immediately following the labeled statement. If the target statement is a 
loop, control transfers to the statement following the loop body. If the target is a 
compound statement (a group of statements enclosed in braces), control transfers to 
the next statement after the block's closing brace. Targeted break statements are 
especially useful when you want to break out of a loop from within a switch 
statement: 

 
scanLoop: 
 for (i = 1 ; i < 10 ; ++i) 
 {

switch(val[i]) 
 {

case '+': 
 ++sum; 
 break; 
 

case '-': 
 --sum; 
 break; 
 

case 'eof': 
 break scanLoop; 
 }

}



30

Targeted break statements are also useful for breaking out of nested loops: 
matchLoop: 
 

for (i = 1 ; i <= val.length() ; ++i) 
 {

for (j = 1 ; j < i ; ++j) 
 {

if (val[i] == val[j]) 
 break matchLoop; 
 }

}

vi) Alternatives to Loops 
It seems to be one of the best kept secrets of TADS 3 that for many purposes 

there's often a more compact alternative to using a loop, particular when working with 
a Collection such as List or Vector. For example the foreach loop used above to 
identify a LightSource held by the player could have been replaced with a single 
statement: 

 
local obj = gPlayerChar.contents.valWhich({x: x.ofKind(LightSource)}); 

 
The above statement will hardly be transparent to the novice, and this 

probably isn't the best place to explain it, since it involves concepts that go some way 
beyond the introductory. At this point it must suffice to call your attention to the 
possibility of this kind of construct, which can be extremely powerful once mastered. 
To find out more (when you feel ready), read the sections on Anonymous Functions, 
List and Vector in the System Manual.
c. Inheritance 

TADS 3 is an object-oriented language which makes heavy use of inheritance 
(that is to say, the language supports inheritance and the library makes heavy use of 
it). At its simplest inheritance allows us to have the best of both worlds: to modify the 
behaviour of an existing object or class but still make use of the behaviour defined on 
that class. For example, suppose we defined a Switch class with a method that defines 
what happens when it's switched on and off: 

 
Switch: Thing 

makeOn(stat) 
{

isOn = stat; 
 "You flip the switch << stat ? 'on' : 'off' >>. " 
}
isOn = nil 

;

Now suppose you wanted a LightSwitch class that did exactly the same as the 
Switch class, but also turn on an associated light source when turned on. You could 
derive this from Switch as a subclass, and you'd still want its makeOn method to do 
everything Switch's makeOn method does, but you'd also want it to light the light 
source. It would be tedious to have to retype the whole makeOn(stat) method, 
particularly in cases where it was something rather more substantial than here; instead 
we can inherit it and then add our own modifications: 

 



31

LightSwitch: Switch 
makeOn(stat) 
{

inherited(stat); 
 if(myLight != nil) 
 myLight.makeLit(stat); 
}
myLight = nil 

;

Note that we don't have to repeat the definition of the isOn property, since this 
is already inherited from the Switch class. We'll now examine this mechanism in a bit 
more detail. 

i) Inherited 
 
A special pseudo-object called inherited allows you to call a method in the 

current self object's superclass. Moreover, you can use inherited in an expression, 
so any value returned by the superclass method can be determined and used by the 
current method. Third, you can pass arguments to the property invoked with the 
inherited pseudo-object. 

You can use inherited in an expression anywhere that you can use self.
Here is an example of using inherited.

MyClass: object 
 sdesc = "myclass" 
 prop1(a, b) 
 {

"This is myclass's prop1.  self = << sdesc >>, 
 a = << a >>, and b = << b >>.\n"; 
 return(123); 
 }

;

myobj: MyClass 
 sdesc = "myobj" 
 prop1(d, e, f) 
 {

local x; 
 "This is myobj's prop1.  self = << sdesc >>, 
 d = << d >>, e = << e >>, and f = << f >>.\n"; 
 x = inherited.prop1(d, f) * 2; 
 "Back in myobj's prop1.  x = << x >>\n"; 
 }

;

When you call myobj.prop1(1, 2, 3), the following will be displayed:  
 This is myobj's prop1. self = myobj, d = 1, e = 2, and f = 3. 
 This is myclass's prop1. self = myobj, a = 1, and b = 3. 
 Back in myobj's prop1. x = 246. 
 

Note that the self object that is in effect while the superclass method is being 
executed is the same as the self object in the calling (subclass) method. This makes 
inherited very different from calling the superclass method directly (i.e., by using 
the superclass object's name in place of inherited). 

You can also specify the name of the superclass after the 'inherited' keyword; 
this is otherwise similar to the normal 'inherited' syntax: 

 



32

inherited Fixture.actionDobjTake(); 
 

This specifies that you want the method to inherit the actionDobjTake() 
implementation from the Fixture superclass, regardless of whether TADS might 
normally have chosen another superclass as the overridden method. This is useful for 
situations involving multiple inheritance where you want more control over which of 
the base classes of an object should provide a particular behavior for the subclass. 

If the last example had been called from within the actionDobjTake() method 
of the object in question, we could simply have written: 

 
inherited Fixture(); 
 
It is legal to omit the property name or expression in an inherited or 

delegated (see below) expression. When the property name or expression is omitted, 
the property inherited or delegated to is implicitly the same as the current target 
property. For example, consider this code: 

 
myObj: myClass 
 myMethod(a, b) 
 {

inherited(a*2, b*2); 
 }
;

This invokes the inherited myMethod(), as though we had instead written 
inherited.myMethod(a*2, b*2). Because the current method is myMethod when the 
inherited expression is evaluated, myMethod is the implied property of the inherited 
expression. 

 
ii) Multiple Inheritance 

An object can inherit properties from more than one other object. This is 
called Multiple Inheritance. It complicates things considerably, primarily because it 
can be confusing to figure out exactly where an object is inheriting its properties 
from. In essence, the order in which you specify an object's superclasses determines 
the priority of inheritance if the object could inherit the same property from several of 
its superclasses.  

 
multiObj: class1, class2, class3 
;

Here we have defined multiObj to inherit properties first from class1, then 
from class2, then from class3. If all three classes define a property prop1, multiObj 
inherits prop1 from class1, since it is specified first.  

Multiple inheritance can be a very useful feature. For example, suppose you 
wanted to define a huge vase; it should be fixed in the room, since it is too heavy to 
carry, but it should also be a container. With multiple inheritance, you can define the 
object to be both a Heavy and a Container (which are classes defined in the standard 
library).  

If a property is inherited from more than one of its superclasses (and is not 
overridden in the object's own property list), the property is inherited from the 
superclass that appears earliest in the list. For example, suppose you define an object 
like this: 



33

vase: Container, Heavy; 
 

If both Container and Heavy define a method named m1, and vase itself doesn't 
define an m1 method, then m1 is inherited from Container, because it appears earlier in 
the superclass list than Heavy.

There is a more complicated case that can occur. You do not need to master 
this in order to follow this guide, so skip this section if you find it confusing. Suppose 
that in the example above, both Container and Heavy have the superclass Thing, and 
that Thing and Heavy define method m2, and that neither Container nor vase define 
m2. Now, since Container inherits m2 from Thing, it might seem that vase should 
inherit m2 from Container and thus from Thing. However, this is not the case; since 
the m2 defined in Heavy overrides the one defined in Thing, vase inherits the m2 from 
Heavy rather than the one from Thing. Hence, the rule, fully stated, is: the inherited 
property in the case of multiple inheritance is that property of the earliest (leftmost) 
superclass in the object's superclass list that is not overridden by a subsequent 
superclass. An alternative way of expressing this is "The first (left-most) superclass 
has precedence for inheritance, so any properties or methods that it defines effectively 
override the same properties and methods defined in subsequent superclasses, except 
that an ancestor class does not override a method or property on any of its descendent 
classes." 

Don't worry if this is less than crystal-clear at the moment; simply think of it 
as something you may need come back to. In the meantime bear in mind two simple 
consequences: (1) it may not always be immediately obvious (in a situation of 
multiple inheritance) what the keyword inherited will inherit from; and (2) the order 
of classes in an object definition can be important (e.g myDoor: Lockable, Door 
works properly while myDoor: Door, Lockable doesn't). 

 
iii) Replace and Modify  

Most game authors sooner or later find that, when writing a substantial game, 
they need to modify the standard library behaviour at a number of points. While it 
would in principle be possible to modify the library files, this would create a problem 
when a new version of TADS is released, because you must either continue to use the 
old version of adv3, which means that any bug fixes or enhancements in the new 
version are not available, or take the time to reconcile your changes to your custom 
adv3 files with those made in the standard version. The replace and modify 
mechanism can help you deal with this problem. 

These keywords allow you to make changes to objects and classes that have 
been previously defined. In other words, you can use the standard adv3 library, and 
then make changes to the objects that the compiler has already finished compiling. 
Using these keywords, you can make four types of changes to previously-defined 
objects: you can replace a function entirely, you can replace an object entirely, or you 
can add to or change the methods already defined in an object, or you can modify a 
function. 

To replace a function that's already been defined, you simply preface your 
replacement definition with the keyword replace. Following the keyword replace is 
an otherwise normal function definition. The following example replaces the 
addToScore() function defined in score.t (part of the standard adv3 library): 

 



34

replace addToScore(points, desc)  
{

if(gPlayerChar.isWorthy) 
 libScore.addToScore_(points, desc);  
}

You can do exactly the same thing with objects or classes. For example, you 
can entirely replace the coarseMesh object defined in sense.t: 

 
replace coarseMesh: Material  
 seeThru = transparent  
 hearThru = transparent  
 smellThru = distant 
 touchThru = transparent  
;

Replacing an object or class entirely deletes the previous definition, including 
all inheritance information and vocabulary. The only properties of a replaced object 
are those defined in the replacement; the original definition is entirely discarded. 

You can also modify an object or class, retaining its original definition 
(including inheritance information, vocabulary, and properties). This allows you to 
add new properties and vocabulary. You can also override properties, simply by 
redefining them in the new definition. 

For example, you might want to change one of the standard library responses 
and add one of your own: 

 
modify playerActionMessages 
 cannotTurnMsg = '{The dobj/he} just will not turn. ' 
 shouldNotSpitMsg = 'It's rude to spit in public. ' 
;

Note that no superclass information can be specified in a modify statement; 
this is because the superclass list for the modified object is the same as for the original 
object.  

In a method that you redefine with modify, you can use inherited to refer to 
the replaced method in the original definition of the object. In essence, using modify 
renames the original object, and then creates a new object under the original name; 
the new object is created as a subclass of the original (now unnamed) object. (There is 
no way to refer to the original object directly; you can only refer to it indirectly 
through the new replacement object.) Here's an example of using inherited with 
modify.

class testClass: object 
 sdesc = "testClass" 
 ;

testObj: testClass 
 sdesc  
 {

"testObj..."; 
 inherited; 
 }

;

modify testObj 
 sdesc  
 {

"modified testObj..."; 



35

inherited; 
 }

;

Evaluating testObj.sdesc results in this display: 
 
modified testObj...testObj...testClass 

 
You can also replace a property entirely, erasing all traces of the original 

definition of a property. The original definition is entirely forgotten - using inherited 
will refer to the method inherited by the original object. To do this, use the replace 
keyword with the property itself. In the example above, we could do this instead: 

 
modify testObj 

 replace sdesc 
 {

"modified testObj..."; 
 inherited; 
 }

;

This would result in a different display for testObj.sdesc: 
modified testObj...testClass 

 
The replace keyword before the property definition tells the compiler to 

completely delete the previous definitions of the property. This allows you to 
completely replace the property, and not merely override it, meaning that inherited 
will refer to the property actually inherited from the superclass, and not the original 
definition of the property. 

The modify keyword can also be used in a function definition. Modifying a 
function is just like replacing it (using the replace keyword), except that the new 
definition of the function can invoke the old definition of the function (i.e., the 
definition that's being replaced). This allows the program to apply incremental 
changes to a function, such as adding new special cases, without the need to copy the 
full text of the original function. 

To invoke the previous definition of the function, use the replaced keyword. 
This keyword is syntactically like the name of a function, so you can put a 
parenthesized argument list after it to invoke the past function, and you can simply 
use the replaced keyword by itself to obtain a pointer to the old function. Here's an 
example. 

 
getName(val) 

 {
switch(dataType(val)) 

 {
case TypeObject: 

 return val.name; 
 

default: 
 return 'unknown'; 
 }

// later, or in a separate source module 
 modify getName(val) 
 {

if (dataType(val) == TypeSString) 



36

return '\'' + val + '\''; 
 else 
 return replaced(val); 
 }

Note how the modified function refers back to the original version: we add 
handling for string values, which the original definition didn't provide, but simply 
invoke the original version of the function for any other type. The call to 
replaced(val) invokes the previous definition of the function, which we're replacing. 

Once a function is redefined using modify, it's no longer possible to invoke the 
old definition of the function directly by name. The only way to reach the old 
definition is via the replaced keyword, and that can only be used within the new 
definition of the function.  
 

iv) Delegated 
It is sometimes desirable to be able to circumvent the normal inheritance 

relationships between objects, and call a method in an unrelated object as though it 
were inherited from a base class of the current object. For example, you might want to 
create an object that sometimes acts as though it were derived from one base class, 
and sometimes acts as though it were derived from another class, based on some 
dynamic state in the object. Or, you might wish to create a specialized set of 
inheritance relationships that don't fit into the usual class tree model. 

The delegated keyword can be useful for these situations. This keyword is 
similar to the inherited keyword, in that it allows you to invoke a method in another 
object while retaining the same "self" object as the caller. delegated differs from 
inherited, though, in that you can delegate a call to any object (or class), whether or 
not the object is related to "self." In addition, you can use an object expression with 
delegated, whereas inherited requires a compile-time constant object. 

The syntax of delegated is similar to that of inherited:
return_value = delegated object_expression.property  

optional_argument_list 

For example: 
 
book: Thing 
 handler = Readable 
 doTake(actor) { return delegated handler.doTake(actor); } 
;

In this example, the doTake method delegates its processing to the doTake 
method of the object given by the "handler" property of the "self" object, which in this 
case is the Readable object. When Readable.doTake executes, its "self" object will be 
the same as it was in book.doTake, because delegated preserves the "self" object in 
the delegatee. 

In the delegatee, the targetobj pseudo-variable contains the object that was 
the target of the delegated expression. 

 



37

d. Afterword 

There is more to the TADS 3 language than has been described here, but 
hopefully we have now covered the basics, and once you have mastered those you 
will be able to glean the rest from the System Manual. There's no need to do that until 
you've worked your way through this guide, although of course if you're burning with 
curiosity to find out what else is there, there's nothing to stop you! 



38

Chapter Two -   A Sample Game  
 
In the next chapter we'll start developing a game that will occupy us for the 

remainder of this Guide (apart from the odd explanatory digression or two). But 
before we embark on The Further Adventures of Heidi we'll start with a very simple 
two-room game (the goldskull example familiar to TADS 2 users) that provides an 
overview of how a TADS 3 program fits together. When you are reading later 
sections, which go into more detail, it may be helpful to have an idea of where the 
details fit into the general structure of a game. This chapter should help provide that 
overview (but readers with some experience of other TADS-like languages who find 
the going a bit too slow might like to skip this chapter and go straight to the next). 

The basic requirements for starting out are the TADS 3 Author's Kit and a text 
editor. If you are using TADS 3 Workbench for version 3.0.13 or later you can use its 
built-in editor (probably the best option both because it has been specially apdapted 
for working with TADS 3 code and because its integration with Workbench makes it 
especially convenient to use); otherwise if all else fails you can use Notepad (or I 
suppose a really determined UNIX user could use vi), but you may like to consider 
downloading one of the many free programming editors available on the internet. 
Information about programming editors that can be used for writing Interactive 
Fiction may be found at http://www.firthworks.com/roger/editors/index.html.

1. A Very Simple Game  

We'll start with about the simplest game possible: two rooms, and no objects. 
(We could conceivably start with only one room, to make things even simpler, but 
then there would be nothing to do while playing the game; with two rooms, we at 
least can move between them.) 

The basis for the game we shall be developing is the so-called 'advanced' 
starter game starta3.t, which should be located in the samples subdirectory of your 
TADS 3 directory. If you are using the TADS 3 Workbench, select New Project, 
choose the 'advanced' rather than the 'beginner' option, call the new file you are about 
to create 'goldskull.t' and locate it in whichever directory you want to work (it's 
probably a good idea to create a new directory called Goldskull or the like for the 
purpose). Otherwise, if you are not using Workbench, copy starta3.t to your new 
Goldskull directory and rename it goldskull.t.  Again, if you are not using Workbench 
you will need to use your text editor to create a file called goldskull.t3m (in the same 
location) containing the following: 

 
-DLANGUAGE=en_us 
-DMESSAGESTYLE=neu 
-Fy obj -Fo obj 
-o goldskull.t3 
-lib system 
-lib adv3/adv3 
-source goldskull 

 
Now open goldskull.t in your text editor of choice (either through Workbench 

or through the text editor – if you use the second method while compiling through 
Workbench you might find it a great relief to uncheck the option 'Ask before 

http://www.firthworks.com/roger/editors/index.html


39

reloading a modified source file' on the Messages tab of the Debugger Options 
dialogue box that comes up through selecting View/Options from the Workbench 
menu). The TADS Compiler will accept an ASCII file produced with any editor.  
Then remove (or modify as shown below) the definition of startroom, i.e. the lines 
that read: 

 
startRoom: Room 'Start Room' 
 "This is the starting room. " 
;

If you started from starta3.t your file should already contain the vital lines: 
 

#charset "us-ascii" 
#include <adv3.h> 
#include <en_us.h> 
 

If not, you will need to add them. You will also need to ensure that your 
source file contains: 

 
gameMain: GameMainDef 
 /* the initial player character is 'me' */ 
 initialPlayerChar = me 
;

/* You could customize this if you wished */ 
versionInfo: GameID   
 /* The IFID can be any random set of hexadecimal digits in this format */  IFID = '5b252939-8c87-0a51-dd3f-eafb1c07da05' 

name = 'Gold Skull' 
 byline = 'by A TADS 3 Tyro' 
 htmlByline = 'by <a href="mailto:$EMAIL$"> 
 $AUTHOR$</a>' 
 version = '1' 
 authorEmail = '$AUTHOR$ <$EMAIL$>' 
 desc = '$DESC$' 
 htmlDesc = '$HTMLDESC$' 
;

Then you can start adding the new code (or adapting the definition of 
startroom that starta3.t already provides): 
 
startroom: Room                  /* we could call this anything we liked */ 
 roomName = 'Outside cave'    /* the "name" of the room */ 
 desc = "You're standing in the bright sunlight just 
 outside of a large, dark, foreboding cave, which 
 lies to the north. " 
 north = cave         /* the room called "cave" lies to the north */ 
 ;

+ me: Actor /* This may already be there if you started from starta3.t */ 
;

cave: Room 
 roomName = 'Cave' 
 desc = "You're inside a dark and musty cave. Sunlight 
 pours in from a passage to the south. " 
 south = startroom 
;

To run this example, all you have to do is compile it with t3make, the TADS 3 
Compiler, and run it with t3run, the TADS 3 Run-time system. If you are using 
Workbench, this is all handled for you; you can simply choose the 'Compile and Run' 



40

from the 'Build' menu (or click the appropriate icons on the task bar). If you're not 
using Workbench, then on most operating systems you can compile your game by 
typing this: 

 
t3make -d -f goldskull 

and you can run it by typing this: 
 t3run mygame  

 
If you have difficulty getting this to work, consult the README file that came 

with your distribution. It's possible, for example, that you may need to manually 
create a subdirectory called obj under you main game directory (Workbench handles 
this automatically). 

Now we'll walk through the sample game line by line. 
The #include command inserts another sourcefile into your program. The file 

called adv3.h is a set of basic definitions that allows your game to work properly 
with the adv3 library (note that the library files themselves are not included; for a full 
explanation of this see the article on 'Separate Compilation' in the Technical Manual,
but there's no need to do that right now). The actual adv3 library files are included in 
your project by virtue of your goldskull.t3m file (which Workbench will have created 
for you automatically, if you are using Workbench). You should be able to use these 
definitions, with few changes, for most adventure games. By incorporating the adv3 
library in your game, you don't need to worry about definitions for basic words such 
as "the," a large set of verbs (such as "take," "north," and so forth), and many object 
classes (more on these in a bit). 

The line including en_us.h is similar; it contains some additional standard 
definitions to interface with the parts of the library that are specific to the English 
language. The reason for placing these definitions in a separate file is that it is then 
much easier to customize TADS 3 to work with other languages. 

The line that says startroom: Room tells the compiler that you're going to 
define a room named "startroom". Now, a Room is nothing special to the TADS 3 
language, but the adv3 library that you incorporated defines what a Room is. A Room 
is one of those object classes we mentioned. The next line defines the roomName for 
this room. A roomName is a short description; for a room, it is normally displayed 
whenever a player enters the room. The desc is the long description; it is normally 
displayed the first time a player enters the room, and can be displayed by the player 
by typing "look".9 Finally, the north definition says that another room, called cave, is 
reached when the player types "north" while in startroom.

A bit of terminology: startroom and cave are objects, belonging to the class 
Room; roomName, desc, north, and the like are properties of their respective objects. In 
the context of TADS programming, an object is a named entity which is defined like 
startroom; each object has a class, which defines how the object behaves and what 
kind of data it contains. Note that our usage is sometimes a little loose, and we will 
also use "object" the way a player would, to refer to something in the game that a 
player can manipulate. In fact, each item that the player thinks of as an object is 
actually represented by a TADS object (sometimes several, in fact); but your TADS 
program will contain many objects that the player doesn't directly manipulate, such as 
rooms. 
 
9 The default behaviour in TADS 3 is in fact for a room's long description to be displayed every time 
the player character enters the room, though the player can change that behaviour. 



41

If you're familiar with other programming languages, you may notice that the 
program above appears to be entirely definitions of objects; you may wonder where 
the program starts running. The answer is that the program doesn't have an obvious 
beginning in the code we typed. 

TADS 3 employs a style of programming different from that you may have 
encountered before; this new style may take a little getting used to, but you'll find that 
it is quite powerful for writing adventure games and simplifies the task considerably. 
Most programming languages are "procedural"; you specify a series of steps that the 
computer executes in sequence. TADS, on the other hand, is more "declarative"; you 
describe objects to the system. While TADS programs usually have procedural 
sections, in which steps are executed in sequence, the overall program doesn't have a 
beginning or an end; or rather it does, but these are buried deep inside the adv3 library 
and taken care of for you.10 

The reason TADS 3 programs aren't procedural is that the player is always in 
control of the game. When the game first starts, the library calls a bit of procedural 
code in your program that displays any introductory text you wish the player to see, 
then the system waits for a command from the player. Based on the command, the 
system will manipulate the objects you defined according to how you declare these 
objects should behave. You don't have to worry about what the player types; you just 
have to specify how your objects behave and how they interact with one another. 
 

2. Adding Items to the Game  

Now let's add a few items to the game that can be manipulated by the player, 
so he can do something besides walk back and forth between our two rooms. We'll 
add a solid gold skull, and a pedestal for it to sit upon.  

 
pedestal: Surface, Fixture 

 name = 'pedestal' 
 noun = 'pedestal' 
 location = cave 
 ;

goldSkull: Thing 
 name = 'gold skull' 
 noun = 'skull' 'head' 
 adjective = 'gold' 
 location = pedestal 
 ;

Here we've defined two objects, pedestal and goldSkull.
The pedestal belongs to two classes, Surface and Fixture. This means that it 

has attributes of both classes; when there's a conflict, the Surface class takes 
precedence, because it's first in the list of classes. Objects of the Surface class can 
have other objects placed on top of them; objects of the Fixture class can't be carried. 
The goldSkull belongs to the Thing class, which is the generic class for portable 
objects without any special properties. 

Since these objects can be manipulated directly by the player, the player needs 
words to refer to them. This is what the noun and adjective properties define. All 
 
10 Of course it would in principle be perfectly possible not to use the adv3 library and then write purely 
procedural code in TADS 3, but that’s a complication beyond the scope of this introductory guide. 



42

objects that the player can manipulate must have at least one noun. Note that the 
goldSkull has two nouns; they are simply listed with a space between them. Objects 
can also have adjectives; these serve to distinguish between objects which have the 
same noun, but are otherwise optional. A good game will recognize all of the words it 
uses to describe an object, so if you describe the skull as a "gold skull," you should 
understand it when the player says "take the gold skull."  

Although here we have defined noun and adjective as separate properties, as 
indeed they are, the English-language part of the TADS 3 library allows a short cut: 
we can instead define an object's vocabulary – its nouns and adjectives – in the single 
property vocabWords, like so:11 

vocabWords = 'gold skull/head' 
 
This brings us to a subtlety. Notice that the desc property uses double quotes 

around its strings, but the other properties have single quotes. The distinction is that a 
string enclosed in double quotes is displayed immediately every time it is evaluated, 
while a string enclosed in single quotes is a string value that can be manipulated 
internally. Double-quoted strings are displayed automatically as a convenience, since 
most strings in text adventures are displayed without further processing. (Note that the 
double quote mark is a separate character on the keyboard, and is not simply two 
single quote marks.) We'll discuss this distinction further at the end of the next 
chapter. 

These two objects have another new property, location. This simply defines 
the object that contains the object being defined. In the case of the pedestal, the 
containing object is the cave room; since the goldSkull is on the pedestal, its location 
is pedestal. Note that the internal workings of the containment model make no 
distinction between an object being inside another object and the object being on 
another object. This means that an object can't (usefully) be both a Surface and a 
Container.12 

3. Making the Items Do Something  

The game is still rather bland; it has no puzzles. So, let's introduce a small 
puzzle. Let's assume that the gold skull wasn't merely left lying around; instead, 
whoever left it there arranged for a trap to go off if it should be lifted off the pedestal. 
To implement this, we need to add a method to the goldSkull object. A method is a 
special type of property which contains code (i.e. a sequence of one or more 
statements) to be executed; it is very much like a function in C or Pascal. The new 
goldSkull with the method looks like this:  

 
goldSkull: Thing 

 name = 'gold skull' 
 vocabWords = 'gold skull/head' 
 location = pedestal 
 

actionDobjTake()   
 {

11 In the next chapter we’ll see a way to make this short-cut even shorter. 
12 Although the ComplexContainer class allows us to simulate an object being both a Surface and a 
Container; but that’s something we’ll come to in due course. 



43

"As you lift the skull, a volley of poisonous 
 arrows is shot from the walls! You try to dodge 
 the arrows, but they take you by surprise!"; 
 

finishGameMsg(ftDeath, [finishOptionUndo]); 
 }

;

The method actionDobjTake (which stands for "action Direct object Take") is 
invoked when the player (or any other actor) tries to take the skull. Here, we've 
simply defined it first to display a message (since the message is enclosed in double 
quotes, it is displayed immediately upon being evaluated), and then to call a special 
function called finishGameMsg (the argument ftDeath shows that we want 
finishGameMsg to end the game with a YOU HAVE DIED message; 
finishOptionUndo offers the player an UNDO option after the death message). 

You should note that we didn't just pick the name actionDobjTake out of thin 
air. The actionDobjTake method in the goldSkull object is called by TADS 3 when 
the player types a "take" command with goldSkull as the direct object. Each verb the 
player types results in the system calling particular methods in the object or objects 
named in the command. The naming of these methods is described in more detail later 
in this guide.13 

You might wonder why we didn't need a actionDobjTake method in our 
original definition of goldSkull, or you might have assumed that the system 
automatically knows what to do if no actionDobjTake is defined for an object. In fact, 
all objects do need a actionDobjTake method, and the system doesn't automatically 
know anything about it. However, since practically every object has the same 
actionDobjTake, with a few exceptions such as goldSkull, it would be extremely 
tedious to type a actionDobjTake method for every object in the game. Instead, we 
use something called "inheritance." By defining the goldSkull to be a member of the 
Thing class, you tell TADS 3 that goldSkull "inherits" all of the definitions for 
Thing, in addition to any definitions it makes on its own. The Thing class, which 
appears in the adv3 library file included at the beginning of the program, defines a 
actionDobjTake method, so anything that is defined to be a Thing inherits that 
definition. However, if something is defined in both Thing and goldSkull, as 
actionDobjTake is in this example, the definition in goldSkull takes precedence - it 
"overrides" the inherited method. 

We actually don't have a very good puzzle here, because there's no way to take 
the gold skull without dying. So, let's put a rock on the cave floor:  

 
smallRock: Thing 

 name = 'small rock' 
 vocabWords = 'small rock' 
 location = cave 
 ;

Now, let's change the actionDobjTake method of the goldSkull.
actionDobjTake() 

 {
if (location != pedestal ||       /* am I off the pedestal? */ 

 smallRock.location == pedestal )  /* or is the rock there? */ 
 inherited;                      /* yes - take as usual */ 

 
13 In TADS 3 code they often appear to be named differently, due to the use of the dobjFor() and 
iobjFor() macros; but we’ll come to them in the next chapter. 



44

else                              /* no - the trap goes off! */ 
 {

"As you lift the skull, a volley 
 of poisonous arrows is shot from 
 the walls! You try to dodge the 
 arrows, but they take you by surprise!"; 
 

finishGameMsg(ftDeath, [finishOptionUndo]); 
 }

}

This new actionDobjTake first checks to see if the object being taken (the 
special object self, which is the object to which the message actionDobjTake was 
originally sent), which in this case is the gold skull, is already off the pedestal; if it is, 
we don't want anything to happen, so we invoke the inherited handling of 
actionDobjTake. We also use the inherited handling if the small rock is on the 
pedestal. When we invoke the inherited handling, the actionDobjTake method that 
we inherit from our parent class (in this case, Thing) is invoked. This allows us to 
override a method only under certain special circumstances, and otherwise do 
business as usual. If we don't satisfy one of these two requirements, the volley of 
poisonous arrows is released as before. 

So, the solution to the puzzle is to put the rock on the pedestal before taking 
the skull, thereby fooling the pedestal into thinking the skull is still there. 

As this stands, the player can avoid losing the game, but can't actually win it. 
To finish the game with a winning ending instead of a deadly one, you can call 
finishGameMsg with ftVictory instead of ftDeath. If you want to try experimenting 
for yourself before going on to the next chapter, see if you can make the game end in 
victory either (a) when the player succeeds in picking up the gold skull, or (b) when 
he succeeds in leaving the cave with it. For the latter, try putting your extra code in 
the enteringRoom(traveler) method of startroom, and testing for the condition 
goldSkull.isIn(gPlayerChar). If you want to be even more adventurous, try adding 
another room, say a path through the jungle leading away from startroom, and make 
the player win the game when the player character enters your new room with the 
skull. However, if you don't feel confident enough to try any of this on your own just 
yet, no matter, just read on. 

This should give you some idea of how a TADS 3 program looks. In the next 
chapter, we'll start to develop a somewhat larger game, starting once again from the 
very basics and developing our understanding of how they're normally handled in 
TADS 3, before going on to add items and puzzles of increasing complexity. 
 



45

Chapter Three -   Starting Out Again - Defining Rooms and Objects 
 

1. Starting a New Game 

In the previous chapter we saw how to create a very simple TADS 3 game. In 
this chapter we shall start creating a somewhat more complex game, which will 
occupy us for the remainder of this guide. Although in the initial stages there will be 
some overlap with what has gone before, it is important to ensure that the foundations 
of understanding are securely laid, and in any case we shall shortly be introducing 
new ways of accomplishing seemingly familiar tasks. 

The basis for the game we shall be developing is once again the so-called 
'advanced' starter game starta3.t, which should be located in the samples subdirectory 
of your TADS 3 directory. If you are using the TADS 3 Workbench, select New 
Project, choose the 'advanced' rather than the 'beginner' option, call the new file you 
are about to create 'heidi.t' and locate it in whichever directory you want to work (it's 
probably a good idea to create a new directory called Heidi for the purpose). 
Otherwise, if you are not using Workbench, copy starta3.t to your new Heidi directory 
and rename it heidi.t. 

Now open the file in your text editor of choice (either through Workbench or 
through the editor) and remove the definition of startroom, i.e. the lines that read: 

 
startRoom: Room 'Start Room' 
 "This is the starting room. " 
;

Next, change the line location = startRoom (after the comment /* the 
initial location */) so that it reads location = outsideCottage. You might also 
like to fill in the other fields with something a bit more meaningful, so that the edited 
file looks something like: 
 

#charset "us-ascii" 
#include <adv3.h> 
#include <en_us.h> 
 
versionInfo: GameID  IFID = '573a8b18-1008-ca66-9580-9a156f82eefa' 
 name = 'The Further Adventures of Heidi' 
 byline = 'by An Author' 
 htmlByline = 'by <a href="mailto:whatever@nospam.org"> 
 ERIC EVE</a>' 
 version = '1.0' 
 authorEmail = 'ERIC EVE <whatever@nospam.org>' 
 desc = 'This is an unexciting tutorial game based loosely on 
 The Adventures of Heidi by Roger Firth and Sonja Kesserich.' 
 htmlDesc = 'This is an unexciting tutorial game based loosely on 
 <i>The Adventures of Heidi</i> by Roger Firth and Sonja Kesserich.' 
 

showCredit() 
 {

/* show our credits */ 
 "The TADS 3 language and library were created by Michael J.  

Roberts.<.p> 
 The original <i>Adventures of Heidi</i> was a simple tutorial game  



46

for the Inform language written by Roger Firth and Sonja Kesserich."; 
 

"\b"; 
 }

showAbout() 
 {

"<i>The Further Adventures of Heidi</i><.p> 
 A Tutorial Game for TADS 3"; 
 }
;

me: Actor 
 /* the initial location */ 
 location = outsideCottage 
;

gameMain: GameMainDef 
 initialPlayerChar = me 
 showIntro() 
 {

"Welcome to the Further Adventures of Heidi!\b"; 
 }

showGoodbye() 
 {

"<.p>Thanks for playing!\b"; 
 }

maxScore = 7      
;

2. Defining our first Room 

So far, the only really significant thing we have done to the source file is to 
indicate that the room in which the game will start will be called outsideCottage. Our 
next job is to define this room. As a first attempt, add the following to the end of your 
source file: 
 
outsideCottage: OutdoorRoom 
 roomName = 'In front of a cottage' 
 desc = "You stand just outside a cottage; the forest stretches east. " 
;

Be careful to copy this code exactly, including the punctuation, not least the 
semicolon at the end (by itself on the last line). Also, be careful to note that 'In front 
of cottage' is enclosed in single quotation marks, and "You stand outside a cottage; the 
forest stretches east. " in double quotation marks. This distinction is important and 
must be followed (the significance of the distinction will be explained in more detail 
on p. 51 below). 

If you compile and run the game it should now run, although the game is 
pretty basic. Since there's only one room in the game you can't actually move 
anywhere, and there are no objects to manipulate or even examine. About the most 
interesting thing you can do with the game right now is to quit straight away! 

Before making things more interesting, let's take a look at the definition of the 
one room we have defined so far. The first line outsideCottage: OutdoorRoom 
consists of the object name followed (after the colon) to the superclass to which it 
belongs.14 The object name is simply the name by which this object will be referred in 
 
14 An object’s ‘class’ defines how the object behaves; the library defines a number of classes for typical 
game situations, such as OutdoorRoom, but you can also define new classes of your own. 



47

our code; we could have called it room101 or auntieMyrtle, but it is obviously better to 
choose something that makes reasonable sense. Note that we have followed the TADS 
3 convention of starting an object name with a lowercase letter, while using a capital 
letter at the start of any subsequent words in the name. 

OutdoorRoom is the name of the class to which we want this game object to 
belong. By default an OutdoorRoom has ground and sky, but no walls, which is what 
we want here. Try running the game again and type examine ground, x sky and x
wall. Now change OutdoorRoom to Room, and compile and run the game again and type 
the same commands. Finally change Room back to OutdoorRoom. Again note the 
naming convention, since OutdoorRoom names not an object but a class it starts with a 
capital letter. 

The next two lines define the properties of our OutdoorRoom object: 
 
roomName = 'In front of a cottage' 
desc = "You stand just outside a cottage; the forest stretches east. " 
 
The roomName property (a string enclosed in single quotation marks) is the brief 

title that names the current room in the status line and at the start of a room 
description. The desc property (a double quoted string) is the longer description that is 
displayed the first time a room is seen, or in response to a look command (or every 
time a room is entered if the game is in verbose mode).15 

Finally, on the last line, is a semicolon by itself; this simply ends the definition 
of this object. An alternative is to enclose the property list in curly braces thus: 

 
outsideCottage: OutdoorRoom 
{

roomName = 'In front of a cottage' 
 desc = "You stand just outside a cottage; the forest stretches east. " 
}

Either form is possible and which you use is largely up to you. There are 
situations (as we shall see later) in which you have to use braces; in other situations 
(as we shall again see) the use of the semicolon can make for more compact code. 

Note that the semicolon is also used to terminate TADS 3 program statements. 
This can be a source of confusion because the property definitions look rather like 
assignment statements, so it can be very easy to slip into writing: 

 
outsideCottage: OutdoorRoom 
 roomName = 'In front of a cottage'; 
 desc = "You stand just outside a cottage; the forest stretches east. "; 
;

If you try to compile this, you'll get an error, because the compiler will now 
think the definition of outsideCottage ends with the name property and won't know 
what to do with the desc property. Since this is such a common source of potential 
confusion it's worth remembering the following golden rule straight away: 

A property definition is not a programming statement. Do not end it with a 
semicolon.16 

15 For the difference between single and double-quoted strings see below, p. 51. 
16 This is not strictly one hundred per cent accurate, since if you use the second form of object 
definition, enclosing the entire list of properties and methods in braces, then it’s okay (though still 
unnecessary) to end property definitions with a semicolon. However, it’s simpler and easier to get into 



48

We have laboured the definition of outsideCottage at some length, since the 
principles involved are common to a great deal of TADS 3 programming, most of 
which consists in defining objects.  

If you read the previous chapter, then all this should be reasonably familiar 
from the "goldskull" example. Now we come to our first major innovation: although 
the definition of outsideCottage seems simple enough, it can in fact be made a good 
deal simpler through a feature of the language called 'templates'. A template simply 
defines a shorthand way of defining the most common properties an object is likely to 
have. Since every room will have a name and a description the TADS 3 library 
defines a template that looks like this: 

 
Room template 'roomName' 'destName'? 'name'? "desc"?;  

 
This means that if we follow the class name of a Room-type object with a 

string in single quotation-marks, it will be taken as the roomName property of the 
Room; we can then optionally supply a second single-quoted string as the destName 
property and (if destName is supplied) a third single-quoted string as the name property 
(a pair of complications we shan't go into here) and, also optionally, a double-quoted 
string as the desc property.17 This would allow our room to be defined simply as: 

 
outsideCottage : OutdoorRoom 'In front of a cottage'    
 "You stand just outside a cottage; the forest stretches east. " 
;

In other words, when defining a room we can simply follow the class (or class 
list) with the room name in single quotation marks, followed by the full room 
description in double quotation (ignoring the destName property for now). Since this is 
generally a far more convenient way of defining objects, it is the way we shall 
generally adopt from now on. The compiler will, however, complain if you attempt 
something that does not conform to the template; for example, you would get a 
compile-time error if you wrote: 

 
outsideCottage : OutdoorRoom 
 "You stand just outside a cottage; the forest stretches east. " 
 'In front of a cottage' 
;

In other words, the properties must be supplied in the order defined in the 
template, and must conform to the number and format of properties the template 
expects. Note, however, that there is nothing magical about laying the code out for 
this object definition on three lines. So far as the compiler is concerned, it could have 
been written: 

 
outsideCottage : OutdoorRoom 'In front of a cottage' "You stand just outside 
a cottage; the forest stretches east. "; 

 

the habit of never ending a property definition with a semicolon. 
17 The use of the destName property will be discussed below, on p. 153. 



49

It is just that the three-line version is more readable to the human eye, and 
makes for more legible code. Thanks to templates, though, there are cases in which it 
is both feasible and legible to code an entire object on a single line. 

 

3. Adding an Object to the Room 

It is time we added an object to our sample game. If you run the game again 
and try typing examine cottage you'll be told that: 

 
The word "cottage" is not necessary in this story. 
 
But since our minimalist room description mentions the cottage, our game 

ought to be able to do a bit better than that. This suggests that the first thing we need 
to add to our game is a cottage. If we defined it in full, our first attempt might look 
like this: 

 
cottage : Thing 
 vocabWords = 'pretty little cottage/house/building' 
 name = 'pretty little cottage' 
 desc = "It's just the sort of pretty little cottage that townspeople 
 dream of living in, with roses round the door and a neat little  
 window frame freshly painted in green. " 
 location = outsideCottage 
;

As we shall see in a moment, this can be simplified using the appropriate 
template and the + syntax, but writing it out in full has the merit of explicitly re-
introducing two important properties, location and vocabWords. The first of these, as 
its name suggests, defines the location of an object (in this case, which room it's in); 
more generally it defines what the immediate parent of an object is in the object tree. 
You should normally avoid manipulating the location property in programming 
statements (but here we have a property definition, not a statement). The second 
property, vocabWords, lists the words the player can use to refer to the object. In this 
definition, the final group of words separated by slashes (cottage/house/building)
are the nouns by which this object may be known, whereas the first two, separated by 
spaces, are the adjectives. This means that if you now compile the game and run it, 
with the cottage added, you'll find that you can examine building, examine little 
house, examine pretty little cottage, but not examine house cottage, or x building 
house.

In practice you would hardly ever define all those properties explicitly, instead 
you'd make use of the standard Thing template (which can be used not only for Thing 
objects but for objects whose classes descend from Thing, which is the great majority 
of physical objects in the game). Using this template, the definition becomes: 

 
cottage : Thing 'pretty little cottage/house/building'  
 'pretty little cottage'  @outsideCottage 
 "It's just the sort of pretty little cottage that townspeople dream of 
living in, with roses round the door and a neat little window frame freshly 
painted in green. "    
;



50

Note the form of this definition, since it is very common in TADS 3. After the 
superclass (or superclass list) comes first the list of vocabulary words in single quotes, 
in the form 'adjective1 adjective2 noun1/noun2/noun3', then the name in single 
quotes, then the location immediately preceded by an @ sign, and then the description 
in double quotes (left till the end since it is likely to be the longest element). The list 
of vocabulary words should always include at least one noun, but may otherwise 
contain as many adjectives and alternative nouns as you care to define. Ideally, what 
you need to aim for is a list of words that will include most of those that a player is 
likely to type to identify the object, while at the same time being sufficiently distinct 
from the words used to identify other objects that the parser will not have too hard a 
time trying to figure out which object is meant. 

The @location element is optional in this template, so you could simply 
define, for example: 

 
cottage : Thing 'pretty little cottage/house/building'  
 'pretty little cottage' 
 "It's just the sort of pretty little cottage that townspeople dream of 
living in, with roses round the door and a neat little window frame freshly 
painted in green. "    
;

The only problem with this is that there's now nothing to say where the cottage 
is located; the game will still compile but the cottage will have disappeared. One way 
to bring it back would be to use the + notation, so that the cottage could be defined: 

 
+ cottage : Thing 'pretty little cottage/house/building'  
 'pretty little cottage'   
 "It's just the sort of pretty little cottage that townspeople dream of 
living in, with roses round the door and a neat little window frame freshly 
painted in green. "    
;

The + is just a shorthand way of saying "set the location property of this object 
to the nearest previous object in the current source file not preceded by a +". The + 
shortcut can be used to nest to any level, so that if we began an object definition with 
++ myObj, the location property of myObj would be set to the nearest preceding object 
beginning with a single + and so on. This allows for very compact code for defining 
nested objects, e.g.: 

 
study : Room 'study' "A large desk stands under the window. "; 
+ desk : Heavy, Surface 'desk' 'desk' "This large desk has a single drawer. 
"; 
++ drawer : Component, OpenableContainer 'drawer', 'drawer' "It looks like 
it should open easily. "; 
+++ redPencil : Thing 'red pencil' 'red pencil' "It's a bit blunt. "; 
+++ bluePencil: Thing 'blue pencil' 'blue pencil' "It's been sharpened 
recently. "; 
 

In this case both the red pencil and the blue pencil will be inside the drawer, 
the drawer inside the desk, and the desk inside the study. 

But, to return to our cottage, if you change its definition to the latest version 
above and recompile and run the game, you should find it still works the same, but the 
way it works isn't quite what we want. For one thing, the room description already 
mentions the cottage (that's why we created a cottage object in the first place), so it's 
rather superfluous for the game to add "You see a pretty little cottage here." More 
seriously, if you type take cottage and then inventory (or i) you'll find that you're 



51

carrying a pretty little cottage, which should probably count as murder of mimesis in 
the first degree.18 

The problem here is that Thing is the most generic class of object in the 
library. For objects that you want the player character to be able to pick up and carry 
around it's often fine, but for things that are fixed in place or otherwise not intended to 
move, it's not the best class to use. We could use the Fixture class to fix the present 
example. Try changing Thing to Fixture in the definition of cottage and recompiling 
the game. Then run it again. You'll see that the game no longer displays "You see a 
pretty little cottage here" and that you can no longer pick the cottage up. This is just 
about what we want (at least for now), but there's a couple of further refinements we 
could add. 

Firstly, the main reason for adding the cottage was that a cottage was 
mentioned in the room description, so the player ought to be able to refer to it. So far, 
we have no other use for the cottage object. In effect, the cottage is purely decorative, 
part of the scenery but not otherwise part of the game. For this purpose the library 
defines a Decoration class, and that might be the one to use here. 

Secondly, since the cottage is purely decorative (at least at this stage) we 
probably won't need to refer to it anywhere else. We can therefore make it an 
anonymous object, i.e. one to which we do not give an object name. Such an object 
can simply be defined with its superclass name (or list). So we can finally redefine our 
cottage as follows: 

 
+ Decoration 'pretty little cottage/house/building' 'pretty little cottage'   
 "It's just the sort of pretty little cottage that townspeople dream of 
living in, with roses round the door and a neat little window frame freshly 
painted in green. "    
;

Try this, and you'll see that the game now simply tells you that "The pretty 
little cottage isn't important" if you try to do anything with it other than examine it. 
For now, this is just what we want. 

You'll note that the description of the cottage includes a door, a window and 
some roses. It's always possible that a player may try to examine these; so as an 
exercise you could try adding further Decoration objects to represent them. 

In the present chapter we have learned the basics of defining room objects and 
other objects. Progress may have seemed slow, but these are the basics that apply to 
all objects in the game, so we should be able to make more rapid progress from now 
on. In the next chapter we'll make our game a little more interesting by adding some 
more rooms and objects. 

 
4. Tying Up Some Loose Strings 

The two objects we have defined so far have included both double-quoted and 
single-quoted strings in their property definitions. To the seasoned TADS 2 
programmer the distinction will need little further explanation. An author coming 
from Inform will be partly prepared and partly misled by the way in which single and 
 
18 Mimesis  comes from the Greek word mi/mhsij – meaning ‘imitation’ or ‘representation by means of 
art’; in a literary or Interactive Fiction context it refers to making one’s creation a reasonable 
representation of the real world, which carrying a cottage around wouldn’t be. 



52

double-quoted strings work in that language. Other readers may be totally mystified. 
At least a brief attempt at explanation is due at this point, since the distinction is fairly 
basic to TADS programming. 

As a first approximation, a single-quoted string is simply a string constant, 
whereas a double-quoted string is a shorthand form of a statement that displays the 
string. That is to say the statement 

 
"To err is human; to make a total mess-up requires a computer. "; 
 
is equivalent to the statement: 
 
say('To err is human; to make a total mess-up requires a computer. '); 
 
It follows, as a first approximation, that a single-quoted string can be used 

wherever it makes sense to use a string constant, while a double-quoted string can be 
used wherever it's legal to write a statement. Thus a single-quoted string can be 
passed as an argument to a function, used in an assignment statement, or manipulated 
with the various string functions, but a double-quoted string cannot. 

The main confusion comes about because a definition such as 
 

widget : Thing 'widget' 'brass widget' 
 desc = "It's a brass widget" 
;

might erroneously lead you to suppose that you could subsequently change the 
desc property of the widget by a statement such as 

 
desc = "It's a silver widget"; 

 
But this code would generate a compiler error. The desc property should be 

regarded, not as holding a string constant, but a routine that prints a string constant, so 
that the definition is effectively equivalent to: 

 
widget : Thing 'widget' 'brass widget' 

desc  { say('It\'s a brass widget'); } 
;

It is thus almost as if a property holding a double-quoted string were in reality 
a method that displays a string, despite its syntactic appearance (by the way, note that 
when we define a method in TADS 3 we do not include the = sign).  

The difference in the way the two kinds of string are employed in object 
definitions is that single-quoted strings are generally used for single words or short 
phrases that will generally be displayed as part of a longer message (such as the name 
property), whereas a double-quoted string is generally used for properties that are 
expected to hold possibly quite lengthy text, usually one or more complete sentences, 
that will always be displayed just as they are (such as the full description of an object 
or room). One further key difference between single-quoted and double-quoted 
strings, and maybe the most important selection criterion in the library itself, is that 
the value of a single-quoted string can be inspected and manipulated, whereas a 
double-quoted string can really only be displayed.  So, for example, if it's going to be 
necessary to look inside a string to see if it starts with a vowel, then we'll definitely 
want the single-quoted version. 



53

A further difference between single and double-quoted strings is that the latter 
may contain embedded expressions enclosed in double angle-brackets (<< >>), 
whereas the former may not. Such embedded expressions may evaluate to a number, a 
double-quoted string or a single-quoted string (or nothing at all, i.e. nil). This means 
that the statement 

 
"The rain in Spain stays <<someExpression>> in the plain."; 
 
is equivalent to 
 
say('The rain in Spain stays ' + someExpression + ' in the plain.'); 
 
Where someExpression could, for example, be a function call or another 

method or property on the same or a different object. Not only does this allow a 
double-quoted string to print variable text, it allows it to call a method that may have 
all sorts of other useful side-effects such as changing the game state, a trick we shall 
be using more than once in what follows. 

What one cannot do, however, is have a single-quoted string that looks like: 
 
'The rain in Spain stays <<someExpression>> in the plain.'; 
 
One can have a single-quoted string by itself as a statement, at least the 

compiler won't complain about it, but it will do absolutely nothing when the program 
is run. 

 
A final example may help to make this all a bit clearer. Here's the definition 

for a widget that changes from brass to silver when it is picked up: 
 

widget : Thing 'widget' 'brass widget' 
 "It's a <<metal>> widget. " 
 dobjFor(Take) 
 {

action() 
 {

name = 'silver widget'; 
 metal = 'silver'; 
 inherited; 
 }

}
metal = 'brass' 

;

With such an object defined, one could obtain the following transcript: 
 

You see a brass widget here.  
 
>x widget 
It's a brass widget.  
 
>take widget 
Taken.  
 
>x it 
It's a silver widget.  
 



54

>i
You are carrying a silver widget.  

 
One final point about strings: in TADS a string that will be used to display a 

complete message (as opposed to an isolated word or phrase) should always end with 
a space (or newline) just before the closing quote, to allow for the possibility that 
something may be displayed directly after it. For a newline, insert \n in your string. 
For a newline followed by a blank line use \b or <.p>; the latter form ensures that 
only one blank line will appear (even if several <.p> tags occur in succession), 
whereas the former, \b, may result in several blank lines, depending on what is 
printed next. If you want several blank lines, then you need to use \b. 

And one final point overall. You may have noticed that the above example 
used something called dobjFor(Take) followed by a method called action() enclosed 
within outer braces. If you followed the goldskull example in the previous chapter, 
you might have expected to see a method called actionDobjTake() here. In fact, the 
two ways of doing it are exactly equivalent. Technically, dobjFor(Take) is a macro,
which the preprocessor expands into the code the compiler actually sees. The effect in 
this case is that what the compiler actually sees here is a method called 
actionDobjTake, exactly as before. Although a macro is usually meant to be a kind of 
shortcut, while in this case it actually makes the code a little more verbose, the use of 
the dobjFor and iobjFor macros in TADS 3 programming is so common that this is 
the style we shall follow from now on.19 

19 At this stage it’s not really necessary to go into the workings of the preprocessor. When you’re ready 
to learn about it in more depth, the full details can be found in the System Manual.



55

Chapter Four -   Moving Around 
 

1. Basic Travel 

The next step is to expand the map to a few more locations (rooms) so we can 
start moving around. We'll begin by adding the other three locations that feature in the 
original Adventures of Heidi. We have already covered most of what we need to know 
in order to do this. Add the following code to the end of the existing program. An 
explanation of new features follows. 

 
forest : OutdoorRoom 'Deep in the Forest' 
 "Through the deep foliage you glimpse a building to the west. 
 A track leads to the northeast, and a path leads south. " 
 west = outsideCottage 
 northeast = clearing   
;

clearing : OutdoorRoom 'Clearing'     
 "A tall sycamore tree stands in the middle of this clearing. 
 One path winds to the southwest, and another to the north. " 
 southwest = forest 
 up = topOfTree 
 north : FakeConnector {"You decide against going that way right 
 now. "} 
;

+ tree : Fixture 'tall sycamore tree' 'tree' 
 "Standing proud in the middle of the clearing, the stout 
 tree looks like it should be easy to climb. "  
;

topOfTree : OutdoorRoom 'At the top of the tree' 
 "You cling precariously to the trunk, next to a firm, narrow 
 branch. " 
 down = clearing 
;

The room definitions and the definition of the tree object should need little 
new explanation. The important new concept that has been introduced in the code we 
have just added is that of a connector. A connector is basically an object that defines 
what happens if the actor (normally but not necessarily the player character) attempts 
to travel via it. Attaching a connector object to a direction property means that travel 
is via this connector when an actor tries to move in that direction. For example, when 
the player character is in the forest and the player types west the player character 
travels via the connector called outsideCottage. You may object at this point that 
outsideCottage is simply a room, the room we started by defining. But Rooms are in 
fact a special kind of Connector, connectors that point to themselves as destination. 
Traveling via a Room thus means traveling to that Room. So if we want to move 
directly from one room to another, we can simply set the appropriate direction 
property to the room we want to be our destination (note that unlike TADS 2, in 
TADS 3 the direction properties northwest, northeast, southwest, and southeast 



56

must be spelled out in full; the other direction properties you will commonly use are 
north, south, east, west, up, down, in and out). 

You have probably noticed that the north property from the clearing uses a 
different kind of connector, in this case a FakeConnector. A FakeConnector is more or 
less what it sounds like, a connector that appears to go somewhere but in fact does 
not. The most common use of this class of connector might be to create 'soft 
boundaries' to your map, to make it look as if it extends further than it does, while 
providing some kind of rationale for the player's inability to explore further in that 
direction.20 In this case we have included a FakeConnector since the room description 
mentions a path to the north, which we shall eventually want to implement, but do not 
wish to implement yet. 

Our use of this connector would have looked more like the use of rooms as 
connectors if we had defined the FakeConnector as a separate object thus: 

 
fakePath : FakeConnector 
 travelDesc = "You decide against going that way right 
 now. " 
;

Clearing would then be defined with 
 
north = fakePath 
 
What we have in fact done is to make fakePath both an anonymous object and 

a nested object (all nested objects are in fact anonymous, though the reverse is not 
true). A nested object is simply an object whose definition is nested inside another 
object definition. In this case the definition of the FakeConnector is nested within the 
definition of the clearing. The definition of a nested object must be enclosed within 
braces (and not terminated with a semicolon). FakeConnector uses a template for 
which a double-quoted string is its travelDesc property (the message that displays 
when one tries to travel via that connector). The definition of the north property of 
clearing is thus a convenient shorthand way of saying 'travel north from here is via 
an anonymous object of class FakeConnector whose travelDesc property is "You 
decide against going that way right now. "  Although this FakeConnector has no name 
of its own, it can be referred to as clearing.north, i.e. the value of the north property 
of the clearing object. Since this kind of shortcut definition is exceedingly common 
in TADS 3 it is worth introducing at this early stage. We shall meet several more 
examples as we go on to develop the game. 

If you compile and run the game as it is it will look as if nothing has changed 
from the previous chapter; the new rooms we have added won't appear. The reason for 
this (which you've probably guessed already) is that we haven't added a connector out 
of the original outsideCottage room (a bug waiting to happen when adding more 
rooms to an already complex map). This is easy enough to put right; just add the 
following to the definition of outsideCottage, between the room description and the 
terminating semicolon: 

 
east = forest 
 
The game should now work as expected. 

 
20 Quite closely related to the FakeConnector is the DeadEndConnector, used to simulate aborted 
travel; for details see the TADS 3 Tour Guide and Library Reference Manual.



57

2. Climbing the Tree – Remapping Behaviour 

Since the player will encounter a tree in the clearing, and since examining the 
tree will tell the player that the tree looks climbable, it is almost inevitable that the 
player will try to climb the tree; indeed this may seem an even more obvious way of 
reaching the top of the tree than typing up. But at the moment, the command climb 
the tree will result in the game responding, "That is not something you can climb." 
What we need to do is to modify the tree object so that trying to climb it has the same 
effect as typing up. There are several ways this could be achieved. Perhaps the 
simplest is to add the following to the definition of tree:

dobjFor(Climb) remapTo(Up) 
 
I.e. replace climb tree with an up command. Both dobjFor and remapTo are in 

fact macros that expand to rather more complex code, but that need not detain us here. 
What the construction means is "when the current object (in this case the tree) is the 
direct object of a climb command, replace this action with what would have happened 
if the player had simply typed up". But an alternative that's worth being aware of, 
since there can often be situations where it works better, is to use TravelVia and the 
name of the connector. In this case we could write: 

 
dobjFor(Climb) remapTo(TravelVia, topOfTree) 
 
This illustrates a couple of useful things: first, how to use remapTo in the more 

general case where the verb takes a direct object, and second, how to use TravelVia 
with a travel connector to achieve movement. However, having pointed this 
possibility out, we'll revert to the first version, which is what we actually want here. 
So if you changed your code to try out TravelVia, before going on change it back so it 
reads: 

 
dobjFor(Climb) remapTo(Up) 
 

3. Making Life More Problematic 

So far the game allows the player to walk from the cottage to the clearing and 
then climb the tree, but this is not particularly challenging. The time has come to add 
a puzzle to the game, and one that will turn out to be sufficiently complex to introduce 
quite a few new elements. 

Let us suppose that in order to climb the tree, Heidi first needs to fetch a chair 
and stand on it. The first thing to do is to prevent Heidi from being able to climb the 
tree from the ground. To achieve this we need to change the definition of 
clearing.up. For this purpose we'll use a close relative (in fact the parent) of the 
FakeConnector, namely the NoTravelMessage. Modify the clearing object so that its up 
property is now defined as follows: 

 
up : NoTravelMessage {"The lowest bough is just too high for  
 you to reach. "} 

 
Now recompile the game and try both going up from the clearing and climbing 

the tree. Both should produce the same message. If we had remapped climb tree to 



58

TravelVia, topOfTree instead of Up this would not have worked; the player could 
have bypassed our puzzle by typing climb tree instead of up.

That was the easy part. The trickier part is creating a chair object that will 
enable Heidi to climb the tree. The first thing is to create a suitable initial location for 
it; the most likely place you'd find a chair is probably inside the cottage. For the 
moment we'll keep things as simple as possible; define the inside of the cottage as 
follows: 

 
insideCottage : Room 'Inside Cottage' 
 "You are in the front parlour of the little cottage. The door out 
 is to the east. "   
 out = outsideCottage 
 east asExit(out) 
;

The only new element here is the asExit macro. The effect of this is that if the 
player types east Heidi will end up where she would have done if the player had typed 
out, but that east won't be listed as a separate exit (either in the status line or in 
response to an exits command). The reason for doing it this way is that if the exit 
lister showed both east and out, it would look to the player as if there were two 
separate exits, instead of two synonyms for the same exit. The reason for providing 
the synonym is that since the forest lies to the east of the player's starting position, the 
cottage most naturally lies to the west, so that to return from the inside of the cottage 
to the starting position outside will most likely be understood as a move back 
eastwards. 

Note that since insideCottage is an indoor room, we have defined it to be of 
class Room rather than class OutsideRoom. To make this room accessible at all we 
should add the following to the definition of outsideCottage:

in = insideCottage 
west asExit(in) 
 
Now recompile the game and you should be able to get inside the cottage by 

typing either enter or in or west (or w). But one thing the player might equally well 
try, namely enter cottage won't work. 

The obvious way to fix this on the basis of what we've done before is to add 
the following to the definition of cottage:

dobjFor(Enter) remapTo(TravelVia, outsideCottage.in) 
 
And this will certainly act just as expected. However, it's more work than we 

need, since the TADS 3 library provides an Enterable class to handle just this kind of 
situation. All we need do, in fact, is to change the definition of cottage to: 

 
+ Enterable ->(outsideCottage.in) 'pretty little 
 cottage/house/building' 'pretty little cottage'   
 "It's just the sort of pretty little cottage that townspeople dream of 
living in, with roses round the door and a neat little window frame freshly 
painted in green. "       
;

Again, this would work with ->insideCottage as well as -
>(outsideCottage.in); the advantage of doing it this way is that if we change what 



59

outsideCottage.in points to (as we shall when we come to add a cottage door) we 
only have to change it in one place. 

An alternative to using the ->connector syntax would have been to define the 
connector property explicitly with 

 
connector = (outsideCottage.in) 
 
Whether you prefer this as being more readable is up to you. 
Now that we have somewhere to put the chair, we can start defining it. What 

we need is something that we can carry around and stand on, but not both at the same 
time. Moreover, when Heidi is standing on the chair, she'll still be in the location the 
chair is in. The class of object we need is thus basically what TADS 3 calls a 
NestedRoom. The TADS 3 library includes a subclass of NestedRoom called Chair that 
does just the job (by default a Chair can be sat on and stood on but not lain upon): 

 
+ chair : Chair 'wooden chair' 'wooden chair' 
 "It's a plain wooden chair. " 
;

There's one fairly easy way we can improve the behaviour of this chair before 
we even think about using it to climb the tree. When Heidi, the player character, is 
sent into the cottage, the game displays the plain vanilla default message "You see a 
wooden chair here." We can improve on this by adding the following property 
definition to the chair object: 

 
initSpecialDesc = "A plain wooden chair sits in the corner. " 

 
The initSpecialDesc property defines how the object will be described in a 

room description before the object has been moved (if we wanted to, we could 
override the conditions under which initSpecialDesc was displayed, but that's a 
complication we won't tangle with for now). 

Now try compiling and rerunning the game. You should find that the chair 
now behaves just as one would expect: you can sit or stand on it (but not lie on it), 
you can also take it, but you can't take it while you're sitting or standing on it, and you 
can't sit or stand on it while you're carrying it.  

But, as you will discover, the chair still doesn't help Heidi climb the tree. The 
problem is that we defined the connector on clearing.up as a NoTravelMessage, 
which blocks travel under all circumstances. What we need is a connector that allows 
Heidi to pass only when the chair is at the foot of the tree, i.e. in the clearing. One 
type of connector appropriate to this task is a OneWayRoomConnector, since this 
possesses methods to control the conditions under which travel is permitted. We could 
define it thus: 

 
up : OneWayRoomConnector 
 {

destination = topOfTree 
 canTravelerPass(traveler) { return chair.isIn(clearing); } 

 explainTravelBarrier(traveler)  
 { "The lowest bough is just too high for  

 you to reach. "; } 
 }



60

The canTravelerPass() method allows travel if and only if it returns true, 
which in this case will happen if and only if the chair is in the clearing. If travel is 
disallowed, the method explainTravelBarrier() is called to explain why not. In this 
case we just print a suitable general-purpose message. 

Before we carry on with refining this, let's digress to another matter. The 
connector we've just defined is defined on the up property of clearing. This might 
lead us to suppose that we could have defined a slightly more general version of it by 
defining: 

 
up : OneWayRoomConnector 
 {

destination = topOfTree 
 canTravelerPass(traveler) { return chair.isIn(self); } 

 explainTravelBarrier(traveler)  
 { "The lowest bough is just too high for  

 you to reach. "; } 
 }

Here we have simply changed the explicit reference to clearing to self, on the 
assumption that it will effectively mean the same thing. But it won't, since in the 
context in which we've defined it, self refers not to the clearing, but to the nested 
OneWayRoomConnector we've just defined on one of its properties. This is a fatally easy 
easy mistake to make (it would perhaps be even easier to have code on the 
OneWayRoomConnector refer to other properties of clearing without qualifying them 
with an object name, forgetting that clearing and the OneWayRoomConnector are two 
different objects), and raises the question whether there is a right way for a nested 
object like the anonymous OneWayRoomConnector in this example to refer to the object 
to one of whose properties it is attached. There is: what we actually need is 
lexicalParent. Thus we could correctly write the previous example as: 

 
up : OneWayRoomConnector 
 {

destination = topOfTree 
 canTravelerPass(traveler) { return chair.isIn(lexicalParent); } 

 explainTravelBarrier(traveler)  
 { "The lowest bough is just too high for  

 you to reach. "; } 
 }

This is now equivalent to writing chair.isIn(clearing), but using 
lexicalParent makes it immediately obvious what the intention is (as opposed to 
having to check that chair refers to the enclosing object).  

If you now recompile the game and try it again, you'll find that it now works 
after a fashion, but that it's less than ideal. There are still several things we should tidy 
up. 

One thing we might like to do is to display a suitable message when the player 
character climbs off the chair and up the tree, rather than just have Heidi suddenly 
transported from the chair to the top. There is a TravelMessage class that allows a 
message to be displayed while traveling, but we have already defined the connector to 
be a OneWayRoomConnector. Since, however, the TravelMessage class inherits all the 
methods we have already used, we can simply change OneWayRoomConnector to 
TravelMessage and add the following property: 

 



61

travelDesc =  "By standing on the chair you just manage to reach the lowest  
 bough and haul yourself up the tree.<.p>"          

 
The connector should now look like this: 
 
up : TravelMessage 
 {

destination = topOfTree 
 canTravelerPass(traveler) { return chair.isIn(lexicalParent); } 

 explainTravelBarrier(traveler)  
 { "The lowest bough is just too high for you to reach. "; } 
 travelDesc =  "By standing on the chair you just manage to  
 reach the lowest bough and haul yourself up the tree.<.p>" 
 }

Recompile the game and try it again. You will soon encounter another small 
problem: the game now describes Heidi as using the chair to reach the bough whether 
she's on the chair or still on the ground when the climb tree or up command is issued. 
You might think this is okay on the grounds that if the player has made Heidi carry 
the chair to the clearing he's probably figured why, so we don't need to make Heidi 
explicitly stand on the chair first, since this step can be taken for granted. Maybe such 
an argument holds some water, but it is potentially rather leaky, since the chair is still 
in the clearing even if Heidi is still carrying it, and this code would allow Heidi to use 
the chair to climb the tree while she's still holding the chair, which surely can't be 
right. It would be better, then, to check that Heidi is actually on the chair (which she 
can't be if she's carrying it) before allowing her to climb. We can achieve this by 
changing the canTravelerPass method to: 

 
canTravelerPass(traveler) { return traveler.isIn(chair); } 
 
We don't then need to test as well that the chair is in the clearing, since it 

already must be if Heidi is in the chair when this connector is available to her. 
Now everything should work reasonably well, except that the game will now 

allow Heidi to climb the tree from the chair even if she's only sitting on the chair, and 
not standing on it. Again, we may not think this matters very much in practice, but if 
we do, there are various ways we could go about fixing it. Perhaps the simplest for 
now is to add the condition that Heidi must be standing to the canTravelerPass() 
method, which finally gives us: 

 
clearing : OutdoorRoom 'Clearing' 
 "A tall sycamore tree stands in the middle of this clearing. 
 One path winds to the southwest, and another to the north." 
 southwest = forest 
 up : TravelMessage  
 { ->topOfTree 
 "By clinging on to the bough you manage to haul yourself 
 up the tree. " 
 canTravelerPass(traveler)  
 { return traveler.isIn(chair) && traveler.posture==standing; } 
 explainTravelBarrier(traveler)  
 { "The lowest bough is just out of reach. "; }  
 }

north = forestPath 
;



62

If there were several objects that could be used for Heidi to stand on, the 
canTravelerPass(traveler) method would only become a little more complicated, 
e.g.: 

 
canTravelerPass(traveler) { 
 return traveler.location is in (chair, crate, stepladder) && 
 && traveler.posture == standing; 
}

Since an just out-of-reach bough is mentioned when the player tries to get 
Heidi up the tree without the aid of the chair, we might want to add that bough 
somewhere. The slight complication is that the bough will be out of reach if Heidi is 
standing on the ground, but not if she's standing on the chair. The OutOfReach class 
handles this type of situation; you could place the following code immediately after 
the definition of the tree object: 

 
++ bough : OutOfReach, Fixture 'lowest bough' 'lowest bough' 
 "The lowest bough of the tree is just a bit too high up for you 
 to reach from the ground. " 
 

canObjReachContents(obj) 
 {

if(obj.posture == standing && obj.location == chair) 
 return true;      
 return inherited(obj); 
 }

cannotReachFromOutsideMsg(dest)  
 {

return 'The bough is just too far from the ground for you to reach. '; 
 }
;

Admittedly this doesn't really allow Heidi to interact very interestingly with 
the bough even if she is standing on the chair; she can touch the bough which she 
can't do from the ground, but that's about it. It might be more interesting if on the 
bough was concealed an object that Heidi needed to find, but this is a step further than 
we need to go for this game (but you're welcome to experiment with it if you wish!). 

One final point: using one object (like the chair here) to gain access to a 
connector (like the way up the chair) is a fairly common situation in Interactive 
Fiction. Often, however, it turns out to be a bit more complicated to implement than 
the example we have worked throught here. You don't need to worry about that just 
yet – there's plenty more to do in this guide first – but if when you try to implement 
something similar in your own game you find TADS 3 doing its best to frustrate you 
at every turn, you'll also find that help is at hand in the article on 'Using NestedRooms 
as Staging Locations' in the Technical Manual.

4. Rewarding the Effort 

If the player has gone to all this trouble to reach the top of the tree, perhaps he 
or she deserves some sort of reward for it. One form of reward is to add some points 
to the player's score. This can be done very simply through the statement: 

 
addToScore(points, 'reason for awarding points'); 



63

In this case we might have: 
 
addToScore(1, 'reaching the top of the tree.'); 
 
The two problems we need to solve now are (a) where best to put this 

statement and (b) how to prevent the player from accumulating a huge (if boring) 
score by repeatedly going up the tree – the point should be awarded first time round 
only. 

It would be possible to code all this in the connector we used on the chair 
object, either by overriding the connector's actionDobjTravelVia method, or, more 
simply (and sneakily) by inserting the relevant code into its showTravelDesc method. 
But this is not the best solution, since we may later want to provide alternative means 
by which Heidi could reach the top of the tree (find a ladder perhaps, or constructing a 
person-lifting kite), and it would be cumbersome if we had to add the same point 
scoring method to each connector and still devise some means of preventing the point 
from being awarded more than once. 

Since what we want to do is to check for the valiant Heidi arriving at a 
particular location (the top of the tree) regardless of how she achieved this feat, the 
best solution is to make use of the enteringRoom method of the topOfTree room. The 
library code already keeps track of which rooms have been visited by setting their 
seen property, so we can use this to ensure that the point is awarded only the first time 
Heidi reaches the top of the tree. The revised topOfTree room then looks like this: 

 
topOfTree : OutdoorRoom 'At the top of the tree' 
 "You cling precariously to the trunk, next to a firm, narrow branch." 
 down = clearing    
 enteringRoom(traveler)  
 {

if(!traveler.hasSeen(self) && traveler == gPlayerChar)  
 addToScore(1, 'reaching the top of the tree. ');           
 }
;

Note that including && traveler == gPlayerChar is being over-cautious in this 
game, since no one but our intrepid player character, the long-suffering Heidi, is ever 
going to visit the top of the tree; but in games where an NPC (non-player character) 
could also arrive at the top of the tree such a check would be necessary.  

Being awarded a point is all very well, but it may all seem pretty pointless if 
that's all that happens when the player character arrives at the top of the tree. At the 
very least she should find something interesting there. Since the room description for 
the top of the tree mentions a branch, that may be the first thing to add. Then perhaps 
we could place a bird's nest on the branch (in the original Adventures of Heidi the 
object was to replace the bird's nest, complete with fledgling, to the branch), and 
finally we could place a worthwhile find in the nest.  

Before turning over the page to see how this guide does it, you could have a 
go at implementing these extra objects yourself. Remember that the branch will need 
to be a Supporter so you can put things on it, and the nest a Container so you can put 
things in it. Remember too that you'll need to make sure that Heidi can't pick up the 
branch – after all it's part of the tree and fixed in place (if in doubt, look at the 
pedestal in the 'goldskull' game). Then put something interesting in the nest, and see if 
you can get your revised game to compile and run. 

 

Comment [ECSE1]: This will 
change; to which rooms actors 
have visited by setting their 
hasSeen property. 



64

Here's how this guide does it (this code should be placed immediately after the 
definition of topOfTree). 
 
+ branch : Surface, Fixture 'branch' 'branch' 
 "The branch looks too narrow to walk, crawl or climb along, but firm 
 enough to support a reasonable weight. " 
;

++ nest : Container 'bird\'s nest' 'bird\'s nest' 
 "It's carefully woven from twigs and moss. " 
;

+++ ring : Thing 'platinum diamond ring' 'diamond ring' 
 "The ring comprises a sparkling solitaire diamond set in platinum. It  
 looks like it could be intended as an engagement ring. " 
;

Note the use of the + notation to nest (no pun intended) each item in the 
preceding one. We make the branch a Surface so that we can put things on it and a 
Fixture so that it's fixed in place; this illustrates how the same object may inherit 
from more than one superclass (but note that the same object can't be both a Surface 
and a Container). The nest is made a Container so we can put something in it. 
Internally there's not a lot of difference; the location property of ring is set to nest,
and the location property of nest to branch. The difference lies in the way the library 
code describes the situation (in or on) and the type of commands it will respond to 
(put in or put on), as you'll find if you add the code and play with the new version of 
the game. 

You'll probably also find that the discovery of the ring seems rather bland and 
bathetic,21 since as soon as Heidi arrives at the top of the tree the game announces 
"On the branch is a bird's nest (which contains a diamond ring)." It would be more 
interesting, and hence would seem a bit more rewarding, if she had to work a little to 
find that ring. Besides, it would not be that unrealistic to suppose that the ring would 
at first be hidden among the twigs and moss that make up the nest. The first step 
towards making things more interesting, then, is to remove the +++ from in front of 
the definition of the ring (so that it starts life outside the game world altogether with a 
location of nil) and then code the nest to respond to a search or look in command. 
This code must first check that we haven't already found the ring, and then, if we 
haven't, it should move the ring into the nest and report the find. While we're at it we 
might as well award the player a point for the discovery. The appropriate code looks 
like this: 

 
++ nest : Container 'bird\'s nest' 'bird\'s nest' 
 "It's carefully woven from twigs and moss. " 
 dobjFor(LookIn) 
 {

action()     
 {

if(ring.moved) 
 {

"You find nothing else of interest in the nest. "; 
 exit; 
 }

ring.moveInto(self); 
 "A closer examination of the nest reveals a diamond ring inside! "; 
 addToScore(1, 'finding the ring'); 
 }

21 I.e. “anticlimatic”; “bathetic” is not a mis-spelling of “pathetic”! 



65

}
dobjFor(Search) asDobjFor(LookIn) 

;

There are five points to note about this code: (1) moved is a property defined by 
the library; it starts at nil (i.e. not true) and is set to true as soon as the object is 
moved from its initial location, which is what ring.moveInto(self) does; (2) to move 
the ring we use its moveInto method, we do not change its location property directly 
by writing something like ring.location = self (part of the reason for this is that the 
library maintains lists of what's contained by what; the moveInto method takes care of 
updating the appropriate lists when an object is moved, while setting the location 
property would not); (3) self simply refers to the object in which it occurs (in this 
case the nest); (4) exit terminates the action straightaway, so that code following an 
exit statement is not executed; the exit statement may also be used to veto an action 
at the check stage, as we shall see shortly; (5) the library definition of Container no 
longer defines dobjFor(Search) asDobjFor(LookIn), so we have to add this to the 
definition of the the nest object to make sure the two verbs behave the same way.  

An alternative way of achieving the same effect would be to leave the +++ in 
front of the definition of ring, and add PresentLater to the front of its class list, at the 
same time changing ring.moveInto(self) to ring.makePresent() in the definition of 
nest. Where the PresentLater mix-in class is used,22 the game initialization makes a 
note of the object's location, then moves it into nil (i.e. out of the game world); a call 
to makePresent() then restores the object to its initial location. Yet another way we 
could achieve much the same effect would be by making the ring of class Hidden, but 
we shall illustrate that on another object shortly. 

Whichever method is employed, the revision to the nest object makes things 
slightly more interesting, but searching the nest isn't that much of a challenge. It 
would be rather more interesting if in order to search the nest we first had to hold it, 
and, furthermore, if the nest was just out of reach so we first had to find some way of 
bringing it nearer (we've already indicated in the description of the branch that Heidi 
can't go crawling along the branch towards the nest). The obvious tool for the job 
would be some sort of stick, and the obvious place to find such a stick might be 
among twigs and branches that had fallen to the ground at the bottom of the tree. 

The simplest way of making it necessary to hold the nest before searching it 
would be to add 

 
preCond = [objHeld] 
 
to the dobjFor(LookIn) code. In this case, however, it doesn't really do what 

we want, since it makes the game too helpful by trying to take the nest for us when a 
search or look in command is issued. We can get the effect we want better by adding 
a check() method instead (which also provides a useful illustration of how check 
might be used):- 
 

check() 
 {

if(!isHeldBy(gActor)) 
 {

"You really need to hold the nest to take a good look at 
 
22 A mix-in class is a class that must be used, or ‘mixed in’ with another; so, for example, in this case 
we should start the definition of ring with ring : PresentLater, Thing and not just ring : 
PresentLater.



66

what's inside. "; 
 exit; 
 }

}

Our next job is to make it impossible to take the nest without the use of the 
stick. We do this by overriding the nest's dobjFor(Take) method. To ease the player's 
"guess the verb" hassle we'll let the player character take the nest if she's simply 
carrying the stick. The appropriate code, which introduces few new ideas, is as 
follows: 

 
dobjFor(Take) 
 {

check() 
 {

if(!moved && !stick.isIn(gActor)) 
 {

"The nest is too far away for you to reach. "; 
 exit; 
 }

}
action() 

 {
if(!moved) 

 "Using the stick you manage to pull the nest near enough to take, 
 which you promptly do. "; 
 inherited; 
 }

}

We include the if(!moved) condition23 in both check() and action() here on 
the assumption that once the nest has been moved, it won't be put back out of reach. 
The inherited statement at the end of the action method ensures that we actually do 
end up taking the nest (by continuing with the standard behaviour for the take action).  

This is fine, but it might not occur to the player that the nest can be taken 
simply because Heidi is holding the stick; the player may suppose some more 
complex command involving both the stick and the nest needs to be used. Out of the 
standard verbs defined in the library the most plausible candidate would be move nest 
with stick, so we'll code this command to act in exactly the same way. This 
introduces a new complication, defining special behaviour for a verb involving two 
objects. We'll begin by defining some code on the intended direct object of this 
command, which is still the nest: 

 
dobjFor(MoveWith) 
 {

verify()  
 {

if(isHeldBy(gActor))  
 illogicalAlready('{You/he} {is} already holding it. ');  
 }

check()  
 {

if(gIobj != stick) 
 {

"{You/he} can't move the nest with that. "; 
 exit; 
 }

23 Note that ! is the negation operator, so that if(!moved) is true if moved is nil. 



67

}
}

The effect of this code is to rule that it is illogical to attempt to move the nest 
with anything while the nest is being held, and not to allow the nest to be moved with 
anything other than the stick (gIobj in the check routine refers to the indirect object of 
the command, which in virtually every case means the second object referred to in a 
two-object command). We leave it up to the stick to deal with the rest, which it'll do 
by passing responsibility back to the nest, thus:- 

 
iobjFor(MoveWith) 
 {

verify() {} 
 check() {} 
 action() 
 {

if(gDobj==nest && !nest.moved) 
 replaceAction(Take, nest);       
 }

}

Note since that this forms part of our definition of the stick, which is to be the 
indirect object of the MoveWith command, we now define iobjFor(MoveWith) instead 
of dobjFor(MoveWith) We supply empty check and verify routines to allow the stick 
to be used as an indirect object of MoveWith (which the library would otherwise 
prevent). The action routine only does something special if the direct object (gDobj) is 
the nest and the nest hasn't already been moved. If either of those conditions fails to 
be met, the command will result in the default MoveWith action of the direct object, 
which is a report to the effect that moving it didn't achieve anything. If, however, the 
direct object is the nest and it hasn't been moved yet we want the result to be the same 
as if we had issued the command take nest while holding the stick. We achieve this 
with the replaceAction macro. This does just what it says it does and stops processing 
the current command, replacing it with the action routine of the new command. Had 
we wished to execute another command and then continue with the existing command 
we would have used nestedAction instead. 

Although the base of the tree is a good place to find the stick, it's probably 
better not to make it too obvious; if the stick is just lying there in plain sight the player 
will take it automatically, which will make getting hold of the nest virtually a non-
puzzle. To make things a bit harder we'll try to disguise the presence of the stick by 
burying it in a pile of useless twigs, so that the player has to do some work (albeit 
minimal) to find them. While we're at it we'll change the description of the sycamore 
tree so that it refers to the pile of twigs. Again, this is something you might like to try 
yourself before turning over the page to see how this guide does it. After changing the 
description of the tree, you'll need to add one object to represent the pile of twigs, and 
then another for the stick object, which should remain hidden until Heidi examines or 
searches the pile of twigs. To hide the stick you could use one of the techniques 
discussed in relation to hiding the ring in the nest, or you could make the stick a 
Hidden object and call its discovered() method at the appropriate moment. 

 
Here's one way of doing it:- 
 

+ tree : Fixture 'tall sycamore tree' 'tree' 
 "Standing proud in the middle of the clearing, the stout 
 tree looks like it should be easy to climb. A small pile of loose  
 twigs has gathered at its base. " 



68

dobjFor(Climb) remapTo(Up)   
 
;

+ Decoration 'loose small pile/twigs' 'pile of twigs' 
 "There are several small twigs here, most of them small, insubstantial, 
 and frankly of no use to anyone bigger than a blue-tit <<stick.moved ? 
 nil : '; but there is also one fairly long, substantial stick among  
 them'>>. <<stick.discover>>" 
 dobjFor(Search) asDobjFor(Examine)  
;

+ stick : Hidden 'long substantial stick' 'long stick' 
 "It's about two feet long, a quarter of an inch in diameter, and  
 reasonably straight. " 
 iobjFor(MoveWith) 
 {

verify() {} 
 check() {} 
 action() 
 {

if(gDobj==nest && !nest.moved) 
 replaceAction(Take, nest);       
 }

}
;

We could have handled the stick in a similar manner to the ring, by moving it 
into the clearing when we wanted it to appear, but this seems a good opportunity to 
introduce the Hidden class, which does much what it says. A Hidden item is one that is 
physically present but does not reveal its presence until its discover method is called. 
By making stick of class Hidden instead of class Thing, we can control when we want 
it to appear. In this case we want it to appear when the player character examines the 
pile of twigs, so we make an embedded call to stick.discover in the description of 
the twigs, using the <<>> syntax. The fact that this method will be called every time 
the twigs are examined doesn't matter, since once the method has been called once, 
the subsequent calls will have no effect. There are a couple of other refinements we 
need to think about, however. First, the description of the pile of twigs should only 
refer to the stick amongst them until the stick has been moved; we achieve this 
through another embedded expression that displays nothing if the stick has been 
moved but describes the stick if it hasn't. Secondly, the player might reasonably try to 
search the pile of sticks as well as examine them, so we add a line to the definition of 
the anonymous sticks object to remap search to examine.

Note how we have defined the vocabWords property of the Decoration object 
representing the pile of twigs: we have defined it as 'loose small pile/twigs'.
Although you can't normally refer to an object by two or more of its nouns, there is an 
exception in the case of a name like 'x of y', where both x and y should be specified as 
nouns. Our pile of twigs will now respond to examine twigs or x small pile or search 
pile of loose twigs and other such combinations. 

Let's just add one final refinement. Normally if you drop an object, it lands in 
the room where you are, as you would expect. But if you were to drop something 
from the top of a tree you'd expect it to fall to the ground below rather than hover 
around in the air still conveniently in reach. It would be good if we could model this 
in our game, and it turns out to be fairly straightforward. First, we need to change the 
class of topOfTree to FloorlessRoom, which means that any object dropped or thrown 
from this location won't land here. Then we need to override topOfTree's bottomRoom 
property to define where something dropped from here will land. In this case we want 



69

bottomRoom to be clearing. Now anything dropped (or thrown) while Heidi is at the 
top of the tree will fall to the clearing, and the game will display a suitable message to 
show that the object is falling out of sight. The definition of topOfTree thus becomes; 

 
topOfTree : FloorlessRoom 'At the top of the tree' 
 "You cling precariously to the trunk, next to a firm, narrow  
 branch. " 
 down = clearing    
 enteringRoom(traveler) 
 {

if(!traveler.hasSeen(self) && traveler == gPlayerChar)  
 addToScore(1, 'reaching the top of the tree. ');           
 }

bottomRoom = clearing 
;

In the next chapter we shall learn how the ring came to be in the nest, who it 
belongs to, and how to win the game. To do that we shall need to create a Non Player 
Character (NPC), and that will be our central task. 

 
5. Controlling the Action 

Before moving on with Heidi's adventures, we should pause to think a bit 
more about those dobjFor and iobjFor macros we introduced in the course of the 
chapter, and how they're used for controlling the effect actions have on objects, since 
this is such a common and essential part of programming in TADS 3. 

The TADS 3 library defines a fair number of actions (see the end of the 
en_us.t library file for their grammar definitions, which will give you some idea of the 
range of actions available), together with default responses. For some standard actions 
like TAKE, DROP, EXAMINE, OPEN, LOCK and PUT ON the standard responses 
are often all you need; for many of the others, such as BREAK, CLEAN, JUMP 
OVER or POUR the standard response is merely a message saying that the proposed 
action is impossible or that it has no effect. In either case, as we have already seen, 
you may often want (or need) to customize the library's default response. This is 
where the library's dobjFor and iobjFor macros come in. 

Before considering how to use these macros, it may be a good idea to 
determine what they mean. They are, in fact, macros that define propertysets, which 
are simply a short-hand device for defining a set of properties which have a common 
element in their name (e.g. fooTake, fooDrop and fooBar, all of which start with foo). 
In the case of the dobjFor and iobjFor macros, it's the name of the action (e.g. Take) 
plus the role of the action (dobj or iobj) that's the common element. So if you write: 

 
dobjFor(Take) 
{

foo = 'poop'  
 bar() { say(foo); } 
}

This is exactly the same, so far as the compiler is concerned, as if you had 
written: 

 
fooDobjTake = 'poop' 
barDobjTake() { say(foo); } 
 



70

The above example is not especially useful, since the library makes no use of  
these property and method names (although you could always define them to do 
something useful in your own code); the library does, however, call a number of 
properties and methods on the direction object and indirect object of any action. For 
example, if the action is TakeWith the following properties/methods will be invoked 
respectively on the direct and indirect objects of the command: 

 
remapDobjTakeWith   remapIobjTakeWith 
preCondDobjTakeWith   preCondIobjTakeWith 
verifyDobjTakeWith()   verifyIobjTakeWith() 
checkDobjTakeWith()   checkIobjTakeWith() 
actionDobjTakeWith()  actionIobjTakeWith() 
 

Any of these properties/methods may be defined (or invoked) using these 
names (and sometimes it may be useful to do so, e.g. if you want to call one action 
method from another); the dobjFor and iobjFor merely provide a convenient way of 
defining these properties without having to remember their full names; e.g. 

 
dobjFor(TakeWith) 
{

remap = nil 
 preCond = [touchObj] 
 verify() 
 {

if(heldBy == gActor) 
 illogicalAlready('{You/he} {is} already holding {the dobj/him}. '); 
 }

check() 
 {

if(gDobj == poisonousSnake) 
 failCheck('You think better of it. '); 
 }

action() 
 {

"{You/he} take{s} {the dobj/him} with {the iobj/him}. "; 
 gDobj.moveInto(gActor); 
 }
}

The verify(), check(), action() and preCondition methods are described in 
some detail in the articles "How to Create Verbs in TADS 3", "TADS 3 Action 
results" and "On good usage of verify() and check() in TADS 3 games" in the 
Technical Manual. These are all articles you will want to read sooner rather than later, 
but for the purpose of following this guide the discussion immediately below should 
suffice. 

 
a. Verify() 

The verify method has two main functions: (a) to veto actions that plainly 
should not be allowed to continue (e.g. EAT MOUNTAIN) and explain the veto, and 
(b) to help the parser decide which object to choose in the case of ambiguity (e.g. if 
OPEN DOOR could refer to either the currently open red door or the currently closed 



71

blue door, verify can be used to prefer the blue door, since you can't open a door that's 
already open). 

A verify() routine should never alter the game state (since, among other things, 
it will probably be called multiple times during object resolution).24 Neither should it 
directly display a string using a double-quoted string or say(). Normally it should 
only contain one or more of the macros designed to be used in a verify routine, if-
statements to determine which macro to use, or the inherited keyword to invoke a 
superclass's verify behaviour. A verify routine can also simply be empty (i.e. contain 
no code at all); this is often useful when you want to allow an action to proceed 
unconditionally. 

The macros that can be used in verify routines to define verify results are: 
 
logical 
logicalRank(rank, key) 
logicalRankOrd(rank, key, ord) 
dangerous 
illogicalAlready(msg, params…) 
illogicalNow(msg, params…) 
illogical(msg, params…) 
illogicalSelf(msg, params…) 
nonObvious 
inaccessible(msg, params…) 
 
Of these, only the five that start with i (illogical or inaccessible) will prevent 

an action altogether, the rest mainly make the object more or less likely to be chosen 
as the object of the action by the parser in case of uncertainty. This is why it is only 
these five i-macros that take a msg parameter, which is single-quoted string (or 
property returning one) explaining why the action may not proceed. For now, it's only 
the four illogical macros that you need to worry about (inaccessible is rarely 
needed in game code).  Each of the four will prevent an action from continuing, but in 
case of ambiguity the parser will choose an object that returns an illogicalAlready 
result to one that returns an illogicalNow result, and either to one that returns a plain 
illogical result. All three will be preferred to something that returns illogicalSelf.

For example, suppose your game has a red door, a red box and a red cup. It's 
perfectly logical to open a door, but it's not a good choice for an OPEN command if 
it's already open. Likewise, a box can probably be opened, but perhaps this red box 
can be broken, and once broken, it's no longer openable. Finally, a cup is never 
something that can be opened; the command OPEN CUP would never make sense. 
You might define the corresponding verify methods as follows: 

 
redDoor: Door 'red door*doors' 'red door' 
 dobjFor(Open) 
 {

verify() 
 {

if(isOpen) 
 illogicalAlready('The red door is already open. ); 
 }

}
;

24 There are minor exceptions to this; it is, for example, perfectly legitimate to include a <.reveal> tag 
in a message displayed from a verify routine, which might be useful for your hints system, but such 
exceptions are beyond the scope of this introductory guide, and for now it’s best to stick rigidly to the 
rule. 



72

redBox: OpenableContainer 'red box*boxes' 'red box' 
 dobjFor(Open) 
 {

verify() 
 {

if(isBroken) 
 illogicalNow('You can no longer open it; it\'s broken. '); 
 }

}
;

redCup: Container 'red cup*cups' 'red cup' 
 dobjFor(Open) 
 {

illogical('You can\'t open a cup. '); 
 }
;

If you type open red when all three red objects are present, then if the red 
door is not closed and the red box is not broken, the parser will ask which red object 
you mean (since under these circumstances either would be equally logical). If the red 
door were already open, but the box not yet broken, the parser would choose the red 
box; if the red door were already open and the box broken, the parser would choose 
the red door (and report that it's already open). Finally, if the player character took the 
broken red box and the red cup to another location and you then typed open red, the 
parser would choose the red box (and report that you can't open it because it's 
broken).25 

Note that in the library the argument to these illogical macros is typically a 
property pointer (e.g. &cannotTakeMsg); roughly speaking, these refer to properties of 
the playerActionMessages object (defined in msg_neu.t). But this is a complication 
we shall set to one side till later; in your own code, at least to start with, you can stick 
to using single-quoted strings.26 

The non-i macros all allow the action to proceed (at least to the check stage, 
see below), but again affect how likely the object is to be chosen by the parser in case 
of ambiguity. The logical macro is simply the default; a verify() routine that 
consists solely of the keyword logical is identical to one that contains nothing at all. 
The logical macro is thus strictly speaking redundant, but it may improve the 
readability of code to use it in a complex verify() routine with several different 
conditions producing different results.  

The logicalRank(rank, key) macro allows you to choose the priority the 
parser gives to selecting different objects in cases of ambiguity. The default rank is 
100; an object with a logical rank of 150 is regarded as a particularly suitable target 
for a command, while one with a logical rank of 50 would be a possible but not very 
likely one. 

Suppose that in the previous example, when the the door is closed and the box 
not broken we wanted the parser to prefer the door to the box in response to an open 
red command.. To boost the ranking of the door, we might use logicalRank thus: 

 
25 Obviously this example is a bit oversimplified; in a real game it would also be necessary to test 
whether the box was already open, and apply an illogicalAlready macro if it was. 
26 Although once you gain more experience with TADS 3 it can be useful to define your own 
playerActionMessages properties and override the library ones. One advantage of defining your own is 
to be able to use the same custom message (e.g. ‘That would be highly uncomfortable. ’) from multiple 
objects without having to define the same text each time. See below. 



73

redDoor: Door 'red door*doors' 'red door' 
 dobjFor(Open) 
 {

verify() 
 {

if(isOpen) 
 illogicalAlready('The red door is already open. ); 
 else 
 logicalRank(120, 'door'); 
 }

}
;

Since the (unbroken) red box has a default logical rank of 100, open red will 
now prefer the door. 

Note that in this example, 'door', the second parameter to the logicalRank 
macro, is the key value; this is effectively an arbitrary single-quoted string. 
Technically it can be used by the parser in breaking a tie (if two objects have the same 
logicalRank with the same key, then the parser knows that it can ignore this and look 
for some other way of breaking the tie), but in practice it seldom matters in game code 
what you put here. 

The final two macros (dangerous and nonObvious) allow an action to proceed, 
but only if the player unambiguously names the object. Both macros also prevent the 
object ever being chosen as a default object for the command in question, or in an 
implicit action. 

The dangerous macro is intended to prevent an object being used in an action 
when carrying out the action on that object would be plainly dangerous (e.g. drink 
poison) even though the action is perfectly possible and the object might be the only 
suitable one in scope. Thus, to prevent a bare drink command from making the PC 
drink the poison when the poison is the only potable object around, you would define 
the poison's verifyDobjDrink() method as dangerous.
poison: Thing 'deadly poison' 'deadly poison' 
 dobjFor(Drink) 
 {

verify() {  dangerous; } 
 action() 
 {

"You feel an unpleasant choking sensation as the poison 
 burns down your throat; then you feel no more. "; 
 finishGameMsg(ftDeath); 
 }

}
;

The nonObvious macro works similarly, but makes the object so marked even 
less likely to be chosen in the event of ambiguity. Its main purpose is to prevent a 
puzzle being solved accidentally by having an action carried out implicitly or by 
default. For example, if we hadn't wanted to make it obvious that the nest could be 
moved with the stick, we could have put nonObvious in the verify() section of the 
iobjFor(MoveWith) on the stick (though this probably wouldn't make much practical 
difference in this particular example). 

So far we have discussed verify() mainly in terms of how the parser selects 
objects in case of ambiguity. In practice, this is what verify() does (in addition to 
preventing certain actions). The 'official' version is that verify() should be used to 
veto an action only if it should be obvious to the player (not the player character) that 
the action is illogical (e.g. eating a mountain or opening an already-open door). In 



74

fact, these two ways of looking it amount to the same thing: the purpose of verify() 
is to help the parser decide what the player probably meant in case of ambiguity. If 
you want to veto an action which is perfectly 'logical' (i.e. one that the player could 
well have meant) you should therefore use check() instead. 
b. Check() 

As just noted, the purpose of a check() routine is to veto an action that is 
perfectly logical, but should not be carried out for some other reason. As with 
verify(), check() should not be used to change the game state.27 All that a check() 
routine should do is either allow an action to go ahead, or else forbid it by displaying 
a message and using the exit macro. 

For example, suppose we gave Heidi a dress. Removing the dress would be a 
perfectly logical action, and so the dress would be a good choice for an ambiguous 
Doff action, and so we don't want to make removing the dress illogical; it may well be 
what the player intends. On the other hand, having Heidi remove her dress in the 
course of her adventures may seem rather out of character, to say the least, and it 
would serve no useful purpose in the game, so we probably want to prevent it. The 
best place to do this would be in a check routine: 

 
dobjFor(Doff) 
{

check() 
 {

reportFailure('You can\'t wander around half naked! '); 
 exit; 
 }
}

Note that here we have used the reportFailure macro; it's not strictly 
necessary to do so here: we could have used a double-quoted string to display the text, 
and it would have worked just as well. However, using reportFailure is a good habit 
to get into, since in other contexts (outside a check() routine) it can be used to signal 
that an action failed, which can sometimes produce better implicit action reports (e.g. 
'(first trying to open the door)' rather than '(first opening the door)' when the attempt 
to open the door fails). 

The use of reportFailure followed by exit is so common in check() 
routines that Thing defines a failCheck() method that combines them both into one 
statement. The foregoing example could then be written: 

 
dobjFor(Doff) 
{

check() 
 {

failCheck('You can\'t wander around half naked! '); 
 }
}

And our dress object (located immediately after the me object in the code) 
could then be defined as: 

 
27 Except in some trivial way such as setting a flag to show that the check routine has disallowed an 
action, which might be useful, for example, when constructing a hint system. 



75

+ Wearable 'plain pretty blue dress' 'blue dress' 
 "It's quite plain, but you think it pretty enough. " 
 wornBy = me 
 dobjFor(Doff) 
 {

check() 
 {

failCheck('You can\'t wander around half naked! '); 
 }

}
;

Of course, there's no reason why an action should not fail in the action() 
routine as well in check() – the failCheck() method would work perfectly well in 
action(), so you may wonder what real purpose check() actually performs, beyond 
making the code look a bit neater if failure is conditional. The real point is that if an 
action is vetoed (either by check, verify or preCond) before it reaches the action stage, 
no action notifications will be sent, and so nothing that might have reacted to the 
action in a beforeAction or afterAction method will in fact do so . 

For example, suppose we went on to define an NPC who reacted to Heidi 
undressing herself in front of him, with something like: 

 
afterAction() 
{

if(gActionIs(Doff) && gActor==gPlayerChar && gDobj==dress) 
 "<q>Hey! What do you think you're doing, young lady!</q> cries 
 the charcoal burner. "; 
}

If we had simply displayed the message about not wandering around half-
naked in the action() routine, we might end up with a transcript like this: 

 
>remove dress 
You can't wander around half naked! 
 
"Hey, what do you think you're doing, young lady!" cries the charcoal burner. 
 

By vetoing the doff action in the check() routine, we ensure that the charcoal 
burner never gets a chance to react, and so we won't get his inappropriate response to 
an action that is not, in fact, carried out. 

 
c. Action() 

The action() routine is in a sense the most straightforward to understand, it's 
the routine that does the actual work of carrying out an action (once it's passed the 
verify, precondition and check stages). However, depending on the nature of the 
action, it may contain the most complex code, since it's here that the game state may 
actually be changed. We have already seen several examples of action() routines, 
most recently that for drinking the poison on p. 73 above. The only complication to 
bear in mind is that if you define action() routines on both the direct and indirect 
objects of an action, both action routines will be carried out (the indirect object one's 
first), so you need to make sure that their combination does what you want; normally, 
it's better to define an action routine on one or the other of the objects involved in a 



76

two-object command, but not both (although there may always be valid reasons for an 
exception to this rule provided you know what you're doing). 

 
d. PreCond() 

There are certain necessary conditions that tend to recur commonly in IF 
actions. In order to read the book or examine the chest, the objects in question have to 
be visible. In order to hit the troll with the sword, or move the nest with the stick, or 
unlock the chest with the gold key, the sword, stick or key first have to be held. These 
common conditions are encapsulated in TADS 3 as PreCondition objects, since they 
represent the common preconditions of various types of a command. 

The preCond property in dobjFor or iobjFor propertyset contains (or, if it is a 
routine, returns) a list of the preconditions needed for the object in question to be used 
in the action in question. For example, in the case of reading the book and examining 
the chest you might define: 

 
preCond = [objVisible] 
 
Whereas, in the case of hitting the troll or whatever, in the appropriate 

iobjFor() section (for AttackWith, MoveWith, UnlockWith) you might define: 
 
preCond = [objHeld] 
 
The library already defines sensible default preconditions for most actions, so 

you often don't need to worry about them. However, as your own games become more 
sophisticated, you may want to adjust the preconditions that apply to a particular 
action on a particular object. For example, you may decide that a particular book 
needs to be held as well as being visible in order to be read, so you might define: 

 
redBook: Readable 'little red book*books'   'red book' 
…

dobjFor(Read) 
{

preCond = [objVisible, objHeld] 
 …
}

;

Like check() and verify() routines, preconditions can veto an action if certain 
conditions aren't met. Unlike check() and verify(), however, they can be used to 
change the game state to meet the precondition. For example, the objHeld 
precondition will first check to see if the object is already held; if it isn't, it will try to 
make the actor take the object (via an implicit action, i.e. one that is reported as '(first 
taking the book)' or whatever). If the implicit action succeeds, the action is allowed to 
proceed (provided there's nothing else preventing it). If not, the action is disallowed, 
with a message like '(first trying to take the book)' that explains the reason for the 
failure (e.g. "The book is out of reach."). Some preconditions, however simply test 
whether the condition is met, and disallow the action if it isn't. For example, an 
objVisible precondition makes no attempt to make an object visible if it isn't (in the 
general case it's impossible to know what implicit action, if any, could bring this 
about), it simply vetoes the action if the object can't be seen by the actor. 



77

The library defines several preconditions, including objOpen, objClosed,
objUnlocked, touchObj, actorStanding, objAudible. For a complete list, see the pre-
conditions section of the "TADS 3 Action Results" section of the Technical Manual.
It is also perfectly possible (and often useful) to define your own, although that is 
beyond the scope of this guide. The best way to get a full understanding of 
preconditions is to study the library file precond.t.  

 
e. Remap() 

We have already encountered remapping via the remapTo macro; it's used 
when we want to remap a command on one object to a different command involving 
the same or maybe different objects (or even no objects at all). So, for example, on the 
tree object we earlier defined: 

 
dobjFor(Climb) remapTo(Up) 
 
What such code actually does is to make the appropriate remap property return 

a list containing the action followed by the objects involved in the action; the example 
above is in fact equivalent to: 

 
remapDobjClimb = [UpAction] 
 
A more complicated example was the cottage, where we defined: 
 
dobjFor(Enter) remapTo(TravelVia, outsideCottage.in) 
 
which is equivalent to: 
 
remapDobjEnter = [TravelViaAction, outsideCottage.in] 
 
Mostly, you can use the remapTo macro without worrying about the underlying  

code the compiler actually sees, but there are a couple of cases where understanding 
the underlying code can be important. The first thing to realize is that if there is a 
remap in operation (that is the remap property is non-nil) this will take precedence 
over all the other action properties (preCond, verify, check and action). In some cases 
this can lead to unexpected results: you may define verify, check and action for some 
verb on some object, but find that the object is doing something quite different from 
what you defined. The reason may very well be that your object has inherited a remap 
from one of its superclasses, and that this remap is taking precedence over your 
customizations of the other methods. 

For example, the library Room class remaps LookIn to Examine. Normally 
this is a perfectly sensible interpretation, but you might decided that's not what you 
want in your game. For example, you might feel that a player who types search room 
or look in room is just being lazy, and should be instructed to concentrate on the 
objects within the room instead. So you might write: 

 
modify Room 
 dobjFor(LookIn) 
 {

verify() 



78

{
illogical('Try examining some of the objects in the room instead. '); 

 }
}

;

But you'd find that this didn't actually change anything; look in room and 
search room would still result in the room being examined, since the remap would 
still be in action. What you'd actually need to do is to reset the remap to nil: 

 
modify Room 
 dobjFor(LookIn) 
 {

remap = nil 
 verify() 
 {

illogical('Try examining some of the objects in the room instead. '); 
 }

}
;

The second area of complication where it can be useful to know how the 
underlying code works is with conditional remapping. The library defines a macro 
called maybeRemapTo(), which only remaps if a certain condition holds (that is, if it's 
first parameter is true). For example, if you had a gate object, and you wanted push 
gate to be treated as close gate when the gate was open, but in the normal way when 
the gate was closed, you could define: 

 
gate: Door 'gate'  'gate' 
 dobjFor(Push) maybeRemapTo(isOpen, Close, self) 
;

The underlying code here is in fact: 
 

remapDobjPush = (isOpen ? [CloseAction, self] : inherited()); 
 

The first thing to note is that if the condition is not met (in this case, if the gate 
is not open), what one gets is not necessarily no remapping, but the inherited 
remapping. Often the inherited remapping is in fact nil, but it might not be. For 
example, suppose you had a room in your game called the Study, and you gave it a 
vocabWords property of 'study', so that it could be the taget of commands. In particular 
you decide that you want the player to be able to enter the command search study,
and have this command find an important letter lying behind the curtain (or 
wherever), if the letter hasn't already been found. You're aware that Room inherits 
dobjFor(Search) asDobjFor(LookIn) from Thing, so you decide to implement finding 
the letter in dobjFor(LookIn). If, however, the letter has already been discovered, you 
decide you want search study or look in study simply to perform a look command, 
so you write: 

 
dobjFor(LookIn) maybeRemapTo(letter.discovered, Look) 



79

Unfortunately, this wouldn't work as you expected; it would do what you 
wanted once the letter was discovered, except that it never will be, since if 
letter.discovered is nil what you get is not no remapping (in other words the 
execution of your dobjFor(LookIn) code), but the inherited remapping, which in this 
case is defined on Room as: 

 
dobjFor(LookIn) remapTo(Examine, self)  
 
So if the letter is not discovered, search study or examine study will remap 

to examine study and your special case LookIn handling (to discover the letter) will 
never be invoked. What you actually need in this case is: 

 
dobjFor(LookIn) 

 {
remap = (letter.discovered ? [LookAction] : nil) 

 }

Another situation when it's useful to use the underlying remap property 
directly is where you want different remappings depending on circumstances. For 
example you might want push gate to open the gate when it's closed, and close the 
gate when it's open. This is beyond the ability of maybeRemapTo, but quite possible 
with the underlying remap property: 

 
gate: Door 'gate'  'gate' 
 dobjFor(Push)  
 {

remap = (isOpen ? [CloseAction, self] : [OpenAction, self] ); 
 }
;

By the way, note that when we're writing the 'raw' code rather than using the 
macro, we have to give the full name of the Action class, hence CloseAction and 
OpenAction rather than just Close and Open. One of the things the remapTo and 
maybeRemapTo macros do for us is to add 'Action' to the name of the action we want 
(e.g. Open or Close), but if we're not using these macros, we have to do it ourselves. 

 
f. Messages 

So far, when we've used things like illogical(), reportFailure() and the 
like, we've used them with single-quoted strings (e.g. illogical('You can't do 
that. ') ). If you look in library source code, however, you won't see them used like  
that; instead you'll see them used with property pointers (e.g. &cannotTakeMsg)
sometimes followed by one or more further arguments. This allows the text of 
messages to be kept separate from the library code, which, among other things, makes 
it easier to translate the library into another language, since all the language-
dependent stuff is on one place – or rather two (en_us.t and msg_neu.t) – rather than 
scattered all over the library. 

What actually happens when the library sees something like 
illogical(&cannotTakeMsg) is that it calls the corresponding property on the object 
returned by gActor.getActionMessageObj(); thus, for example, when the library wants 
to display the message from illogical(&cannotTakeMsg) it actually calls: 

 



80

gActor.getActionMessageObj().cannotTakeMsg 
 
This then returns the single-quoted string to be displayed. When the player 

character is the actor (as is generally the case when executing player commands), then 
gActor.getActionMessageObj() returns playerActionMessages; if an NPC is 
performing the action then it returns npcActionMessages. Both objects are defined in 
msg_neu.t, where you can find all the library default messages. 

Sometimes you'll see in library code that one of these message macros has 
more than one parameter; for example, you might see something like: 

 
illogical(&mustBeHoldingMsg, self); 
 
In such a case the second and subsequent parameters are arguments to the 

method invoked by the first parameter, so that the above example would get its 
message string from: 

 
gActor.getActionMessageObj().mustBeHoldingMsg(self) 

So far this may all seem quite remote from the concerns of a game author, but 
as we shall see, this mechanism can have its uses in game code. 

Firstly, if you don't like any of the library default messages, you can simply 
modify the playerActionMessages object to substitute your own version (this is not 
the only way to do it, but it's probably as good as the alternative, which we'll see in a 
minute). For example, the standard response to trying to put something on an object 
that isn't a Surface is "There's no good surface on {the iobj/him}. "; thus, for example, 
if you try to put the stick on the cottage: 

 
>put stick on cottage 
There's no good surface on the pretty little cottage. 

 

You might prefer a different message as a default, such as "You can't put 
anything on {the iobj/him}. " In which case all you need to do is to override the 
notASurfaceMsg in playerActionMessages:
modify playerActionMessages 
 notASurfaceMsg = '{You/he} can\'t put anything on {the iobj/him}. ' 
;

If you like, you can try adding this to heidi.t, recompiling, and then trying 
putting the stick on the cottage (or anything else on anything else that's not a surface). 

In addition to this, you can also change the messages by defining the 
appropriate message property on a class or object. Thus, for example, we could have 
obtained almost the same result by modifying Thing: 

 
modify Thing 
 notASurfaceMsg = '{You/he} can\'t put anything on {the iobj/him}. ' 
;

I say almost the same result because there is in fact a small (though readily 
fixable) catch with this that we'll come to shortly, which is why the first method might 
be slightly better for making global changes to messages. However, this second 
method is very useful when you want to customise the message that appears for 



81

individual objects (or particular classes of object). For example, suppose instead of 
the plain vanilla "You can't take that" message you'd get from trying to take the 
cottage, you'd like to see "It may be a small cottage, but it's still a lot bigger than you 
are;  you can't walk around with it!" One way to do that would be to override the 
cottage's verify method for the Take action: 

 
dobjFor(Take) 
{

verify() 
 {

illogical('It may be a small cottage, but it\'s still a lot  
 bigger than you are; you can\'t walk around with it! '); 
 }
}

That will work fine, but it's relatively verbose just for changing a message, and 
could quickly become quite tedious if you wanted to customize a lot of messages on a 
lot of objects. However, the mechanism we've just been exploring offers a handy 
short-cut; all you actually need to do to customize this response on the cottage is to 
add the following to its definition: 

 
cannotTakeMsg = 'It may be a small cottage, but it\'s still a  

 lot bigger than you are; you can\'t walk around with it! ' 
 
What happens here is that the procedure for choosing which object will supply 

the message is a little more complex than originally described above. Before the 
parser selects either the playerActionMessages or npcActionMessages object it looks to 
see if the property it's looking for is defined on any of the objects defined in the 
action; if so, it uses that object instead. Since cottage now defines a cannotTakeMsg 
property, the cottage's version is used in preference to that defined on 
playerActionMessages.

But although this is very useful, it also presents a potential trap for the unwary. 
Suppose we also wanted to customise the response to clean cottage. In the same way 
we could just add a cannotCleanMsg property to the definition of the cottage: 
 
+ Enterable -> (outsideCottage.in)  
 'pretty little cottage/house/building' 'pretty little cottage'   
 "It's just the sort of pretty little cottage that townspeople 
 dream of living in, with roses round the door and a neat  
 little window frame freshly painted in green. "      
 

cannotTakeMsg = 'It may be a small cottage, but it\'s  
 still a lot bigger than you are; you can\'t walk around with it! ' 
 cannotCleanMsg = 'You don\'t have time for that right now. '  
;

If you now recompile heidi.t and enter the command clean cottage, you'll see 
that it works as expected, you now see the response "You don't have time for that 
right now." The trouble is you'll see the same response if you enter the obviously 
nonsensical command clean door with cottage, instead of the expected "You can't 
clean anything with that" or "You wouldn't know how to clean that." The problem is 
that since the cottage defines a cannotCleanMsg, and the cottage is one of the objects 
involved in the command, the cottage's cannotCleanMsg is used in preference to any of 
the properties on playerActionMessages. The solution is to specify that you only want 
your custom cannotCleanMsg to be used when the cottage is the direct object of the 
command; you can do that with the dobjMsg macro: 



82

cannotCleanMsg = dobjMsg('You don\'t have time for that right now. ') 
 

Similarly, if you defined a message that should only work when the cottage is 
the indirect object of a command (e.g. put stick on cottage), you must remember to 
use the iobjMsg macro: 

 
notASurfaceMsg = iobjMsg('You can\'t reach the roof. ') 
 

Forgetting to use dobjMsg or iobjMsg when customizing a response for what is, 
or might be, a two-object command is a very easy mistake to fall into, so it's worth 
drumming into yourself at an early stage that you must always stop to think whether 
one or other macro might be necessary. Frequent use of customized messages is one 
thing that tends to distinguish a really good piece of IF from a mediocre one, so this is 
a technique you will want to master and use often in your own work. 

There is one further problem here. If you type a nonsensical command like 
clean cottage with door you'll now see the response "You don't have time for that 
right now", which is clearly less than ideal. This can't be fixed simply by tweaking 
message properties; the cleanest solution here might be to make clean with fail in 
check rather than verify on the direct object, so the indirect object's failure message is 
used instead: 

 
modify Thing 
 dobjFor(CleanWith) 
 {

verify() {} 
 check() { failCheck(&cannotCleanMsg); } 
 }
;

The question you're probably asking yourself now is, "That's all very well, but 
how on earth do I know what message property I need to customise for a given 
action?" Well, you can find out by looking through the library code, but that's fairly 
laborious, so you really need a quick-reference chart: you should one find included in 
the TADS 3 documentation set, or a complete set of quick-reference charts for TADS 
3 can be obtained from http://users.ox.ac.uk/~manc0049/TADSGuide/QRefs.zip.
Since this information is so important for TADS 3 authors, it's also included in this 
Guide at Appendix A (though you'll probably find the downloaded chart a bit easier to 
use, since you can print it out on the two sides of a single sheet of paper). The chart 
doesn't list all the messages defined in the library (that would make such an unwieldy 
document that it would probably be self-defeating), but it does include the ones you'll 
most commonly want to override. For each of the transitive actions defined in the 
library (i.e. actions that take one or more Things as objects, but excluding actions 
such as Look or Inventory that don't), the chart shows the corresponding message 
property name as it is defined on Thing, and also on any subclasses where it is 
overridden to something different. The chart also indicates whether the message 
property is invoked from verify, check or action (abbreviated to V, C, and A 
respectively) and whether it is used when the object is either the direct or indirect 
object of the command (abbreviated to d or i). Thus, for example, if you look under 
PutIn (not to be confused with the Russian president) you'll see: 

http://users.ox.ac.uk/~manc0049/TADSGuide/QRefs.zip


83

PutIn  Thing iV  notAContainerMsg 
 Fixture dV  cannotPutMsg 
 Component dV  cannotPutComponentMsg(location) 

 Immovable dC  cannotPutMsg 

This means that Thing.verifyIobjPutIn uses notAContainerMsg, and this will 
propagate all the way down the class hierarchy (except for objects that are Containers, 
of course). There's no entry for Thing dV since in general there's no reason to rule out 
a Thing as the direct object of a PutIn command. However, since Fixtures, 
Components and Immovables can't be moved, they can't be put in anything, so there 
are messages for not being able to put them. The only difference between Fixture and 
Immovable is that in Fixture a PutInAction is ruled out in verify(), whereas in an 
Immovable it's ruled out in check(); in both cases the cannotPutMsg is used. A 
Component also rules itself out as the direct object of a PutIn command, again in 
verify(), but this time with a different message and one that calls a parameter (location 
will normally be the object the Component is a component of).  If you wanted to 
define your own cannotPutComponentMsg on an object, you can either simply define it 
as a single-quoted string, or as a method that's passed location as a parameter, e.g. 
either 

 
cannotPutComponentMsg = 'You can\'t do that, because it's part of  
 the worble-wangler. ' 

 
Or 
 

cannotPutComponentMsg(obj) 
{

gMessageParams(obj); 
 return 'You can\'t do that, because it\'s part of {the obj/him}. '; 
}

As an example to try in the context of the Heidi game, you could try adding 
the following in the starting location (outsideCottage): 

 
+ Distant 'forest' 'forest' 
 "The forest is off to the east. " 
 tooDistantMsg = 'It\'s too far away for that. ' 
;

This works fine, even though the library version of tooDistantMsg is actually a 
method which is passed self as a parameter (look under Default in Appendix A). 

 
g. Other Responses to Actions 

So far we have concentrated on how you can customise the responses to 
actions on objects directly involved in those actions as direct or indirect object, and 
that will probably be the most common type of action customisation you'll perform. 
But there are other types of response we should look at for the sake of completeness. 

If you want an object not directly involved in a command to respond to it, you 
can use beforeAction() or afterAction(). As their names suggest, the first of these 
responds to the action just before it's performed (i.e. just before the appropriate action 



84

routine is invoked) while afterAction() is called just after an action is performed. 
These two routines are called on every object that's in the actor's scope when the 
action is performed, but only if the command reaches the action stage (i.e. it hasn't 
already been ruled out by verify(), check(), or preCond). Thus, if you want another 
object to respond to an action that fails, you must make it fail in action, rather than 
before, e.g. 

 
wickedWitch: Person 'wicked ugly witch' 'wicked witch' 
 "Boy is she ugly! " 
 isHer = true 
 dobjFor(Kiss) 
 {

verify() { } 
 action() 
 {

reportFailure('You move your lips towards hers, but your 
 nerve fails you at the last moment. '); 
 }

}
;

bob: Person ' fine young man /bob'  'Bob' 
 "He looks a fine young man. " 
 isHim = true 
 isProperName = true 
 beforeAction() 
 {

if(gActionIs(Kiss) && gDobj == wickedWitch) 
 {

"<q>Hey, what do you  think you\'re doing!</q> cries Bob, 
 grabbing you by the arm and pulling you back, <q>Don\'t you 
 know that kissing her will turn you into a lump of vile green 
 blancmange?</q> ";       
 exit; 
 }

}
;

If the PC tries to kiss the wicked witch while Bob is present we'll get: 
 

>kiss witch 
"Hey, what do you  think you're doing!" cries Bob,  grabbing you by the arm and pulling you 
back, "Don't you  know that kissing her will turn you into a lump of vile green blancmange?" 

 
Whereas if the PC tries to kiss her when Bob is elsewhere we'll get: 
 

>kiss witch 
You move your lips towards hers, but your nerve fails you at the last moment. 

 
Note the use of the exit macro in Bob's beforeAction() routine to veto the 

action before it takes place. We could alternatively have given Bob an afterAction() 
routine to give his reaction after the event: 

 
afterAction() 

 {
if(gActionIs(Kiss) && gDobj == wickedWitch) 

 {
"<q>Wise decision</q> Bob approves, <q>I suppose you realize 

 that if you had gone ahead and kissed her you\'d have been 
 turned into a lump of vile green blancmange!</q> ";       



85

}
}

You can also allow the actor's location (Room or NestedRoom) to respond to 
actions in a similar way, but in that case you need to use roomBeforeAction() or 
roomAfterAction, e.g.: 

 
topOfTree : OutdoorRoom 'At the top of the tree' 
 "You cling precariously to the trunk, next to a firm, narrow branch." 
 down = clearing    
 enteringRoom(traveler)  
 {

if(!traveler.hasSeen(self) && traveler == gPlayerChar)  
 addToScore(1, 'reaching the top of the tree. ');           
 }

roomBeforeAction() 
 {

if(gActionIs(Jump)) 
 failCheck('Not here –- you might fall to the ground and 
 hurt yourself. ');   
 }

roomAfterAction() 
 {

if(gActionIs(Yell)) 
 "Your shout is lost on the breeze. ";           
 }
;

Finally, you can also use the actorAction() method on the actor performing the  
action to interfere with or otherwise repond to an action the actor is about to perform. 
For example, suppose at some point in your game your player character is tied up, and 
while he's tied up he can't perform any actions other that system actions (like quit,
save and undo) and look, inventory or examine; you might achieve this by adding an 
isTiedUp property to your Player Character object (normally me), and then adding the 
following actorAction() routine: 

 
actorAction() 
{

if(isTiedUp && !gActor.ofKind(SystemAction) 
 && !gActionIn(Look, Inventory, Examine) 
 {

"You can't do that while you're tied up. "; 
 exit; 
 }
}

6. Summary and Recapitulation 

A great deal of new material has been introduced in the course of this chapter, 
a lot of it in a not particularly systematic way as it has become necessary for 
implementing this or that game feature. It may be helpful to conclude the chapter with 
a slightly more systematic summary of the various library (and language) features 
employed. 
a. Connectors 

We have introduced various types of connectors. The simplest of these is 
simply the Room (or one of its subclassses). If a direction property of a Room is set to 



86

another Room, then traveling from the first room in that direction takes you to the 
second Room. The other types of connector we have used are: 

 
FakeConnector 
NoTravelMessage 
OneWayRoomConnector 
TravelMessage 
 
These connectors have the following properties/methods that we have made 

use of: 
destination 
canTravelerPass (traveler) 
explainTravelBarrier (traveler) 
isConnectorApparent (origin, actor) 
travelDesc 
 
The destination property is relevant only to connectors that actually go 

somewhere (the OneWayRoomConnector and the TravelMessage); travelDesc applies 
only to TravelMessage.

Connectors can be assigned to direction properties as nested objects, e.g.: 
 

myRoom : Room 'A Boring Room' 
 "This room has a single exit through a narrow gap to the west. "  
 west : TravelMessage 
 {

destination = myOtherRoom 
canTravelerPass(traveler) { return !bigHeavyPlank.isIn(traveler); }  

 explainTravelBarrier(traveler) { "You can't get through  
 the narrow gap carrying that great big plank. "; }   
 travelDesc = "You just manage to squeeze through the gap. "} 
 }

north : NoTravelMessage { "Try as you might, you can't walk through  
 the wall. "} 
 south : FakeConnector { "On second thoughts you decide against going 
 through the fourth-floor window. "} 
;

For further information on connectors, have a look at the TADS 2 Tour Guide 
and the TADS 3 Library Reference Manual.
b. Rooms 

In addition to the basic Room properties introduced in the previous chapter 
and the direction properties used in this chapter, we have made use of the following 
methods of Room objects /macros: 

 
enteringRoom(traveler) 
asExit() 

c. Object Types & Properties 

The various types (or, more accurately, classes) of game object we have made 
use of in this chapter include: 

 
Thing 
Surface 
Container 



87

Fixture 
Enterable 
FloorlessRoom 
Hidden 
PresentLater (mix-in class) 
Chair 
 
(The last of these is a subclass of NestedRoom. )

We made use of (among others) the following object methods/properties: 
 
- initSpecialDesc (description of item not yet moved) 
- moved (has the object moved from its initial location?) 
- lexicalParent (the object in which a nested object is nested) 
- isIn() (to determine if one object is contained within another)28 

d. Dealing with Actions 

We have seen how the dobjFor and iobjFor macros, in conjunction with preCond,
verify(), check(), remap and action(), may be used to define the behaviour of game 
objects that are the direct or indirect objects of particular commands. For further 
details see the Technical Manual.

We have also seen how dobjFor may be used in conjunction with other macros 
to redirect or redefine actions, e.g. 

 
dobjFor(Search) asDobjFor(Examine) 
dobjFor(Climb) remapTo(TravelVia, clearing.up) 
 
Also the following may be used to stop processing the current action and carry 

out another instead, or to carry out one action within another: 
 
replaceAction(Take, stick) 
nestedAction(Take, stick) 

To test for what type of action (command) is being currently executed use, 
e.g.: 

 
if(gActionIs(Drop)) 
 
To block an action at the verify stage use: 
illogical ('Reason why this cannot be done') 
or 
illogicalNow('Reason why this cannot be done right now') 
 
To block it at the check() or action() stage, use exit or failCheck().

To have other objects, the location, or the actor interfere with or respond to the 
action, use beforeAction(), afterAction(), roomBeforeAction(),
roomAfterAction(), or actorAction().

28 Note that this returns true even if the containment is indirect. For example if the pencil is the in 
drawer, and the drawer is the desk, and the desk is in the study, then pencil.isIn(study) is true. To test 
for direct containment use isDirectlyIn(). 



88

Override message properties (e.g. cannotTakeMsg) to customise responses. 
e. Miscellaneous 

Other things we made use of include: 
- addToScore(points, 'what you have done to deserve them') 
- gPlayerChar (the Player character object) 
- gActor (the actor carrying out the current command) 
- gDobj (the direct object of the current command) 
- gIobj (the indirect object of the current command) 
- inherited (to invoke the behaviour defined on a superclass) 
- {The dobj/he} (an example of message parameter substitution) 
 



89

Chapter Five -   Character Building 
 

1. Setting the Scene 

The main task in this chapter will be to add an NPC (Non-Player Character) to 
our game, though in the course of doing so we shall be looking at a number of other 
matters. The first task is to add another couple of locations to give our NPC 
somewhere to operate. He's going to be a charcoal-burner working in the forest; 
clearly, then, he needs a fire to tend, which we'd better put in another clearing. In 
order to avoid having one clearing running straight into another, we'll put a length of 
path in between.  

Once again, you might like to have a go at implementing all this yourself 
before turning the page and seeing how this guide does it. First of all you need to add 
a 'forest path' room north of the clearing, and a 'fire clearing' room north of the forest 
path, remembering to add all the appropriate connections. The game map should then 
look like this, with the new rooms you're adding shown in pale blue: 

 

There's no need to put any objects in the Forest Path, but in the Fire Clearing 
we'll want a fire, and also the smoke given off by the fire. Give some thought to what 
class to make these objects. In particular, smoke is not a solid physical object, so you 
might want to make it of a class we haven't encountered before, Vaporous, since this 
has the kind of behaviour we need; it is designed for insubstantial objects such as fire, 
smoke and fog which you can sense but not interact with in any other way.  

It is not quite right for the fire in the clearing, however, since this fire is 
something rather more substantial. The fire object will require some thought since 
quite apart from the fact that it's too big to pick up or push around, there are more 
immediate reasons why one would not expect Heidi to try to manipulate a burning 
fire. It would be tedious for you to have to write special handling for every single 
action the player might on the fire, however, so it may help you to know that there's a 
short-cut way of dealing with this: you can use dobjFor(Default) (which means, this 
is what we do when the current object is the direct object of any action not explicitly 
defined for this object). There are some actions you will then need to explicitly allow, 
however, such as examining and smelling the fire. 

 

Outside 
Cottage 

Forest 

Clearing 

Forest 
Path 

Fire 
Clearing 

Inside 
Cottage 

Top of 
Tree 



90

Our new code looks like this: 
 

forestPath : OutdoorRoom 'forest Path' 
 "This broad path leads more or less straight north-south 
 through the forest. To the north the occasional puff of 
 smoke floats up above the trees. " 
 south = clearing 
 north = fireClearing 
;

fireClearing : OutdoorRoom 'Clearing with Fire' 
 "The main feature of this large clearing a large, smouldering charcoal 
 fire that periodically lets off clouds of smoke. A path leads off 
 to the south, and another to the northwest. " 
 south = forestPath 
 northwest : FakeConnector {"You decide against going that way 
 right now. "} 
;

+ fire : Fixture 'large smoking charcoal fire' 'fire' 
 "The fire is burning slowly, turning wood into charcoal. It nevertheless 
 feels quite hot even from a distance, and every now and again lets out 
 billows of smoke that get blown in your direction. " 
 dobjFor(Examine) 
 {

verify() {} 
 action() { inherited; } 
 }

dobjFor(Smell) remapTo(Smell, smoke) 
 dobjFor(Default) 
 {

verify() { illogical('The fire is best left well alone; it\'s  
 <i>very</i>  hot and {you/he} do{es}n\'t want to get too close.<.p>');} 
 }

;

+ smoke : Vaporous 'smoke' 'smoke' 
 "The thick, grey smoke rises steadily from the fire, but gusts of wind  
 occasionally send billows of it in your direction. "  
 smellDesc = "The smoke from the fire smells acrid and makes you cough. "    
;

There's one further change we need to make before trying any of this out, and 
that's to change the north property of clearing to read: 

 
north = forestPath 
 
There's not a lot here that's new in principle, but one or two things about the 

fire and smoke objects merit some further explanation. 
So we start by defining the fire as a Fixture, since it certainly isn't the sort of 

thing one would walk away with. We have used dobjFor(Default) to stop most 
actions on the fire at the verify stage since this makes reasonably good conceptual 
sense, it should seem illogical to the player to take, eat, or move a fire; it also 
conveniently stops it before the display of default messages defined in the check() or 
action() methods of dobjFor the various verbs on any of Fixture's superclasses, such 
as Thing. But, since left to itself, dobjFor(Default) would trap all actions on the fire, 
we need to make Examine carry out its inherited behaviour. Finally, since it would not 
be unreasonable to smell the fire, we allow for that also, in this case by redirecting the 
action to the smoke emanating from the fire. 

 



91

2. A Basic Burner 

Now that we have set the scene, we can introduce our NPC, a charcoal burner 
who will be tending the fire. We may start by defining him thus: 

 
burner : Person 'charcoal burner' 'charcoal burner' 
 @fireClearing 
 "It's rather difficult to make out his features under all the grime and 
 soot. " 
 properName = 'Joe Black'  
 globalParamName = 'burner' 
 isHim = true 
;

This may seem very simple code for such a potentially complicated object, 
and it certainly doesn't look like the charcoal burner will do very much. The main 
reason for the simplicity of this object definition is that most of the complexity of 
NPCs will be handled through ActorState and TopicEntry objects, which we'll be 
encountering shortly. Strictly speaking, the TADS 3 library doesn't force you to use 
ActorStates and TopicEntries; you are free if you wish to code your NPC with 
dobjFor(This) and iobjFor(That) and a host of switch and if statements, but unless 
your NPC is fairly simple, this is likely to result in tangled spaghetti code that 
becomes harder and harder to maintain. Since we're not trying to create Burner 
Bolognese we'll stick to the means provided by the library, which allows highly 
sophisticated NPC behaviour with code that's both much cleaner and easier to 
understand and maintain. The secret is that we go about coding our NPC using a 
largely declarative rather than a largely procedural approach; in other words we 
define the NPC's behaviour through a series of object definitions rather than through a 
mass of code controlled by state variables, switch statements and the like. 

But before moving on to see how this declarative approach works, let's stop 
and look at our basic burner object. The first thing to note is that he's of class Person,
which seems pretty reasonable. Person is (indirectly) a subclass of the more generic 
Actor class; we use Person rather that Actor since an Actor could be a small furry 
animal you could pick up and carry around with you, which our charcoal burner 
certainly isn't. 

Secondly, we have defined the initial location of our burner object using 
@fireClearing rather than the + syntax (which would have worked perfectly well). 
There are two reasons for doing it this way: (a) ActorStates and TopicEntries are all 
objects that will be located in their Actor (either directly, or more deeply nested to 
several levels); had we put a + before the definition of our actor that would be one 
more + we'd have to put before each and every ActorState and TopicEntry object – 
not that much more typing, perhaps, but something that would make our code that 
much less readable and more error-prone, especially if we end up having to nest to 
++++ or +++++; (b) in a more complex game we might want to move our NPC 
definition (together with all its associated objects) to a different place in our code, or 
even into a different source file; if we had defined the NPC's starting location with the 
+ syntax we'd then not only have to remove the + from in front of the NPC, but 
remove one + from each and every ActorState and TopicEntry we'd nested inside it. 

Thirdly, the properName property is not part of the TADS 3 library at all; it's a 
property we've defined on the object for our own use. At the moment this simply 
illustrates that this is something we can do. What this new property is for hardly needs 
explaining; how we are going to use it is something we shall reveal shortly. 



92

Fourthly, the globalParamName is just a convenience feature that we shall use 
shortly. What it allows us to do is to use parameter substitution strings like {the 
burner/he} when we want to display the current name of the burner (which will 
change from "the charcoal burner" to "Joe Black" once he's introduced himself). 
Finally, defining isHim = true means that the charcoal burner can be referred to as 
'him'. For a female NPC you'd define isHer = true.

Both TopicEntry and ActorState are generic classes with several subclasses 
that tend to be the classes one uses in practice. At some point you should look at the 
more detailed explanation of their use in the "Creating Dynamic Characters" articles 
in the Technical Manual, but for now you can just follow the discussion here. 

Since the main objective of the game is to return the diamond ring to the 
charcoal burner (for reasons that will become apparent later), we may as well start by 
making our burner respond when Heidi gives him the ring. In the bad old days we 
should have had to do that by writing dobjFor(Give) methods on the ring and 
iobjFor(Give) methods on the burner (and likewise for Show, if we wanted the 
burner to respond to being shown the ring). Fortunately, this can now all be handled 
by TopicEntries, more specifically, by the subclasses of TopicEntry called GiveTopic,
ShowTopic and GiveShowTopic. As their names suggests, a GiveTopic defines its actor's 
response to a Give command, a ShowTopic to a Show command, and a GiveShowTopic 
to either a Give or a Show command. For our purposes, we may as well use a 
GiveShowTopic.
+ GiveShowTopic @ring 
 "As you hand the ring over to {the burner/him}, his eyes light up in  
 delight and his jaws drop in amazement. <q>You found it!</q> he  
 declares, <q>God bless you, you really found it! Now I can go and call  
 on my sweetheart after all! Thank you, my dear, that's absolutely  
 wonderful!</q>" 
;

Once again, using a template makes defining this object very simple. The 
object following the @ symbol is not the location but in fact the value of the 
GiveShowTopic's matchObj property, which means the object that is the direct object of 
the Give or Show command matched by this TopicEntry. In other words, this 
GiveShowTopic will be invoked in response to the commands give ring to burner or 
show ring to burner. The double quoted string is the value of the GiveShowTopic's 
topicResponse property, which is displayed when the GiveShowTopic is invoked. We 
precede the object definition with a + sign because a TopicEntry has to be contained 
within its Actor (or one of its Actor's ActorStates or TopicGroups). The <q> and </q> 
sequences within the topicResponse string are codes for opening and closing smart 
quotes: when the game is run they should be displayed thus: "You found it!" he 
declares, "God bless you…"29 Likewise {the burner/him} is a parameter string that 
should display as either 'the charcoal burner' or 'Joe Black' depending on whether we 
know his name at that point (how we learn his name is something we'll be seeing 
later).  

That will work if Heidi hands Joe his ring, but what happens if she tries to 
give or show him anything else? For now, the only thing he's interested in receiving 
from Heidi is his ring, so if she tries to give him anything else, he should refuse. But 
if he always refuses in precisely the same way he'll begin to look a bit wooden. The 
 
29 Unfortunately you'll just have to imagine the curly quotes here, as my PDF converter seems to be 
unable to cope with them. 



93

best way to handle this, then, is through a combination of a DefaultGiveShowTopic 
(which defines the response to Joe's being shown or given anything not otherwise 
specifically defined) and a ShuffledEventList, which picks a random response from a 
list (more on which shortly). 

 
+ DefaultGiveShowTopic, ShuffledEventList 
 [

'{The burner/he} shakes his head, <q>No thanks, love.</q>', 
 'He looks at it and grins, <q>That\'s nice, my dear.</q> he remarks, 
 handing it back. ', 
 '<q>I\'d hang on to that if I were you.</q> he advises. ' 
 ]
;

This definition means that the object is both a DefaultGiveShowTopic and a 
ShuffledEventList. The list of single-quoted strings between the square brackets is 
the eventList property of the ShuffledEventList (via the DefaultTopic template). 
Notice that these strings must be separated by commas, and they must be single-
quoted, not double-quoted, strings. This, incidentally, is another reason why the {The 
burner/he} syntax is valuable, it can be used in both types of string, whereas the 
alternative way of achieving the same effect, <<burner.theName>>, can only be used 
in double-quoted strings. Since the strings are single-quoted we have to use the 
backslash character (\) before any apostrophes we want to use inside them (hence 
"That\'s nice" for "That's nice"). 

The ShuffledEventList uses the strings from its list in random order, but does 
not repeat any one string until it has used all of them; it is thus like shuffling a pack of 
cards, turning each card over in turn, then repeating the process (as often as desired). 
This is better for the purpose than a RandomEventList which could in principle print 
the same string two (or more) times in succession. 

You can now try recompiling the game and playing it through to the point 
where you hand the ring to the burner (you can try handing him other objects first to 
see what happens). Everything should work fine apart from one thing – returning the 
ring to the charcoal burner is meant to be the object of the game, but apart from the 
burner's effusive thanks, nothing much happens when the ring is handed over. The 
game just carries on and the player isn't even awarded any extra points. In order to fix 
this, we'll take a brief detour through a special function for ending games. 

 
3. Ending the Game 

TADS 3 provides a finishGameMsg(msg, extra) function for ending a game 
and displaying a message. This function optionally displays a message explaining 
precisely how or why the game has ended, such as *** YOU HAVE DIED *** or *** 
YOU HAVE WON ***. Although there will not be many ways of ending the game in 
The Further Adventures of Heidi, and we won't let Heidi get killed off, we can 
demonstrate the use of this funtion at one point in the game: when the player wins.  

What the function does is to end the game, display a message explaining why, 
and then provide the user with options to RESTORE, RESTART, or QUIT, plus any 
additional options such as UNDO or show the FULL SCORE defined by the extra 
parameter (which is passed as a list). So, for example, if you want the UNDO option 
and the FULL SCORE option to be displayed, specify the second argument to 
finishGameMsg as [finishOptionUndo,finishOptionFullScore].  



94

The first argument, msg, can either be a single quoted string containing the 
message you want displayed, such as  'YOU HAVE FAILED DISMALLY IN YOUR 
QUEST' or one of the pre-defined FinishType objects: ftDeath, ftVictory, ftFailure 
or ftGameOver, which display an appropriate message (you could also define your own 
FinishType objects, but that's a complication we'll leave for now). Either way the 
message will appear surrounded by asterisks ('***'). Alternatively, if the msg 
argument is nil no message will be displayed. 

 If you were going to call this function from several different places in your 
code, always with the same options, you might find it convenient to define your own 
wrapper function to do this, for example: 

 
endGame(msg) 
{

finishGameMsg(msg, [finishOptionUndo,finishOptionFullScore]); 
}

Then at each point where you wanted the game to end, you could simply call 
endGame(msg) without having to specify the list of extra options that you always 
wanted to be displayed. Since, however, finishGameMsg is only called once in heidi.t, 
there's little point our doing that here. 

That's all very well, but we now need to call finshGameMsg() when Heidi 
hands the ring over to the charcoal burner, and at first sight that looks a bit tricky 
because it appears that all the GiveShowTopic does is to display a string. 

One way to get round this would be to place <<finshGame(ftVictory, 
[finishOptionUndo,finishOptionFullScore]))>> at the end of the double-quoted 
string in the GiveShowTopic. Since a function call is a perfectly valid expression, and 
this one effectively returns nil, this should work perfectly well. However, we might 
also want to add a couple of points to the player's score at this point, at which point 
using the <<>> construct starts to get a bit cumbersome. Besides, it's useful to have 
another approach up our sleeve for situations where embedding expressions in 
double-angle brackets won't really do the job. 

What we do is simply to exploit the fact that although the library expects 
topicResponse to be a property containing a double-quoted string, the TADS 3 
compiler will be perfectly happy if we treat it as a method containing any code we 
like.30 We can thus amend our definition of the GiveShowTopic to: 

 
+ GiveShowTopic @ring 
 topicResponse 
 {

"As you hand the ring over to {the burner/him}, his eyes light up in  
 delight and his jaws drop in amazement. <q>You found it!</q> he  
 declares, <q>God bless you, you really found it! Now I can go and call  
 on my sweetheart after all! Thank you, my dear, that's absolutely  
 wonderful!</q>"; 
 addToScore (2, 'giving {the burner/him} his ring back. '); 
 finishGameMsg(ftVictory, [finishOptionUndo,finishOptionFullScore]); 
 }
;

30 You could instead override the method handleTopic(fromActor, topic), which is the method that in 
turn invokes the topicResponse property (or method), but since this requires you to remember and type 
an argument list you probably won’t use, there seems to be little or no advantage to it. 



95

We have finally reached the point where the game is playable all the way 
through. It's not a very exciting game, to be sure, but at least it's now winnable. It 
would be more interesting if we could make the charcoal burner a more responsive 
character, so the player could learn a little more about him, how he came to lose the 
ring, why it's so important to him, and so forth. That is what we shall try to do next. 

 
4. The Art of Conversation 

When you go up and talk to someone, the chances are that they won't just 
carry on what they're doing while they're talking with you, they're more likely to stop 
and adopt another posture (no doubt you can think of plenty of exceptions to this, but 
it's true most of the time). Also, it's normal to begin and end a conversation with some 
kind of greeting and farewell protocol (e.g. saying "Hello and goodbye."). Of course 
there are people who will just bounce up to you and say, "Have you done the monthly 
sales figures yet?" or "What do you think about the election results?", but it's more 
normal to start with "Good morning" or the like. 

The traditional way of programming NPCs to respond to ASK ABOUT and 
TELL ABOUT (as in ask jones about monthly report or tell fred about election 
results) doesn't really allow for such niceties. The player character just walks up to 
the NPC and tries to find out what topics he, she, or it will respond to, without much 
sense that a conversation is starting or ending in the normal way. TADS 3 goes a long 
way to providing a more realistic approximation to the way human beings actually 
converse by using ActorStates and greeting protocols. 

The idea is that an actor (NPC) typically starts in a type of ActorState called a 
ConversationReadyState that defines what he or she is doing prior to the conversation, 
and how the conversation is begun and ended. Starting a conversation with the actor 
(either with a talk to command, or by using ask about, ask for, tell about, give to, or 
show to) then causes the greeting message to be displayed, and the actor to switch 
into the corresponding InConversationState. This latter type of ActorState typically 
provides a description of what the actor is doing while talking to you, and contains 
within it the various TopicEntry objects to which the actor will respond while in that 
state. 

To see how this works in practice, add the following code immediately after 
the definition of the DefaultGiveShowTopic:
+ burnerTalking : InConversationState 
 stateDesc = "He's standing talking with you. "  
 specialDesc = "{The burner/he} is leaning on his spade  
 talking with you. " 
;

++ burnerWorking : ConversationReadyState 
 stateDesc = "He's busily tending the fire. " 
 specialDesc = "<<a++ ? '{The burner/he}' : '{A burner/he}'>>  
 is walking round the fire, occasionally shovelling dirt onto it with his  
 spade. " 
 isInitState = true 
 a = 0
;

+++ HelloTopic, StopEventList 
 [

'<q>Er, excuse me,</q> you say, trying to get {the\'s burner/her} 
 attention.<.p> 



96

{The burner/he} moves away from the fire and leans on his spade 
 to talk to you. <q>Hello, young lady. Mind you don\'t get too  
 close to that fire now.</q>', 
 '<q>Hello!</q> you call cheerfully.<.p> 
 <q>Hello again!</q> {the burner/he} declares, pausing from  
 his labours to rest on his spade. ' 
 ]
;

+++ ByeTopic 
 "<q>Bye for now, then.</q> you say.<.p> 
 <q>Take care, now.</q> {the burner/he} admonishes you as he  
 returns to his work. " 
;

+++ ImpByeTopic 
 "{The burner/he} gives a little shake of the head and returns  
 to work. " 
;

The specialDesc is the description of the actor that appears in the room 
description. The stateDesc is appended to the end of the desc of the actor when he's 
examined with an examine command. By default, the library expects to find the 
ConversationReadyState contained within its corresponding InConversationState 
(which is what we have done here). Clearly, the game needs to know which 
ActorState our charcoal burner starts in; we achieve that by setting isInitState = 
true on burnerWorking (the ConversationReadyState).  

To display what happens at the start of a conversation, we use a HelloTopic 
located in the ConversationReadyState. In this game, we are assuming that Heidi and 
the charcoal burner have never seen each other before, so the exchange between them 
on their first meeting is likely to be different from that on subsequent occasions. We 
accordingly define the HelloTopic to be a StopEventList as well. A StopEventList 
works through each element in its list in sequence, until it reaches the last one, which 
it then keeps repeating. In this example we have only provided two strings in the list – 
one for the first greeting and a second one for every subsequent greeting. We could 
also use an ImpHelloTopic to provide a different response if Heidi strikes up a 
conversation with Joe without first explicitly greeting him through a player command 
(talk to burner), but this is a complication we can manage without here. 

Likewise, to display what happens at the end of the conversation we use a 
ByeTopic. We could once again display a list of different messages when the 
conversation is terminated, but here we take the simpler option of displaying the same 
message each time. On the other hand we supply a separate ImpByeTopic to define 
what happens if the conversation is ended implicitly (either by Heidi walking away in 
the middle of the conversation, or by exhausting the burner's attention span by failing 
to continue the conversation) rather than explicitly (with a bye command).31 

If this all seems a bit much to take in, it may become clearer if you try running 
the game again with it included and seeing how the charcoal burner now behaves (you 
can get into conversation with him either explicitly with talk to burner or by trying 
to give him or show him something). At some point you will also want to have a 
careful read of the articles on creating dynamic characters in TADS 3 in the Technical 
Manual, though there's no need to do that until you've completed this guide. 

 
31 You could further distinguish between these two implicit goodbye cases with LeaveByeTopic and 
BoredByeTopic. See the TADS 3 Tour Guide for details. 



97

I should explain, though, that there's one little trick in the code given above 
that you won't find documented there or anywhere else. Since Heidi has never seen 
the charcoal burner before, the very first time he's mentioned he should be described 
as "a charcoal burner", but, once he's been referred to once, on every subsequent 
occasion he should be called "the charcoal burner" (until we learn his name, when 
he'll be referred to as "Joe Black", which is why we're using the substitution strings – 
{the burner/he} and so forth). To achieve this effect, the specialDesc property of 
burnerWorking has been defined thus: 

 
specialDesc = "<<a++ ? '{The burner/he}' : '{A burner/he}'>>  
 is walking round the fire, occasionally shovelling dirt onto  
 it with his spade. " 

 
The first part of this little trick is the use of the ternary operator ? : . This 

means if the expression before the question-mark is true, evaluate to the expression 
between the question-mark and the colon, otherwise evaluate to the expression after 
the colon. So, for example: 

 
(x > 5) ? 96 : 32 
 
evaluates to 96 if x is 6 but to 32 if x is 4. Moreover, a++ means use the current 

value of a, then increase it by one after we've use it. We have initialized the property a 
to 0 (something as uninformative as 'a' would normally be frowned upon as a property 
name, but since we're using it here to determine whether the burner should be called a
burner or the burner, we might just about be forgiven for it). This means that the first 
time the specialDesc string is displayed, a is zero (which is treated as equivalent to 
nil, i.e. a Boolean false), so the whole expression in the double angle brackets 
evaluates to the parameter string '{A burner/he}' which in turn displays as "A 
charcoal burner". But since the act of displaying the string causes a to increment by 
one, on every subsequent occasion the specialDesc string is displayed a will be some 
number greater than zero, which will be treated as meaning true. This will result in 
the whole expression evaluating to '{The burner/he}', and thus displaying as "The 
charcoal burner". 

The next step is to give the charcoal burner a couple of topics he can talk 
about. Since he's tending a fire, and the fire and smoke are mentioned in the room 
description, they might be two obvious topics to start with. Compared with what 
we've just done, coding them is fairly straightforward: 

 
++ AskTopic @smoke 
 "<q>Doesn't that smoke bother you?</q> you ask.<.p> 
 <q>Nah! You get used to it - you just learn not to breathe too deep when 
 it gets blown your way.</q> he assures you. " 
;

++ AskTopic, ShuffledEventList @fire 
 [

'<q>Why have you got that great big bonfire in the middle of the  
 forest?</q> you ask.<.p> 
 <q>It\'s not a bonfire, Miss, it\'s a fire for making charcoal.</q> he 
 explains, <q>And to make charcoal I need to burn wood - slow like –  
 and a forest is a good place to find wood - see?</q>', 
 '<q>Doesn\'t it get a bit hot, working with that fire all day?</q> you  
 wonder.<.p> 
 <q>Yes, but it beats being cooped up in an office all day.</q> he 
 replies, <q>I couldn\'t stand that!</q>', 
 '<q>Why do you keep putting that dust on the fire?</q> you wonder.<.p> 



98

<q>To stop it burning too quick.</q> he tells you. ' 
 ]
;

We make them both of class AskTopic so that the burner will respond to ask 
burner about fire or ask burner about smoke. For the smoke we've just given him a 
single reply he'll give every time (not because this is a particularly good idea, but just 
to show how it's done). For the fire, we've given him a list of three responses which 
will be treated as a ShuffledEventList (since their order is not significant). There's 
only a couple of other points to note here. The first is that our response strings define 
both sides of the conversation, so we see what Heidi asks as well as what the burner 
answers. The second is that these topics belong in burnerTalking, the 
InConversationState, so we precede them both with two plus signs to contain them at 
the right place in the object hierarchy. 

It's always possible that the player will try to ask the burner some topic we 
haven't explicitly defined, so it would be useful to define a catchall 
DefaultAskTellTopic to handle such cases: 

 
++ DefaultAskTellTopic 
 "<q>What do you think about <<gTopicText>>?</q> you ask.<.p> 
 <q>Ah, yes indeed, <<gTopicText>>,</q> he nods sagely, 
 <q><<rand('Quite so', 'You never know', 'Or there again, no  
 indeed')>>.</q>" 
;

This definition (loosely based on a similar trick in the sample game that comes 
with TADS 3), is designed to create the vague illusion of responding to any topic 
(though the illusion will quickly be shattered in practice), by using gTopicText, which 
returns the text of whatever the player typed after about in an ask burner about or 
tell burner about command. When the rand() function is given a list of arguments, 
as here, it selects one of them at random; this at least gives a measure of variety to the 
charcoal burner's meaningless replies, and will generate a transcript like: 

 
>ask burner about the weather 
"What do you think about the weather?" you ask. 
 
"Ah, yes indeed, the weather," he nods sagely, "You never know." 
 
>ask him about weapons of mass destruction 
"What do you think about weapons of mass destruction?" you ask. 
 
"Ah, yes indeed, weapons of mass destruction," he nods sagely, "Or there again, no 
indeed." 
 
>ask him about his mother 
"What do you think about his mother?" you ask. 
 
"Ah, yes indeed, his mother," he nods sagely, "Or there again, no indeed." 

 
The last of these rather gives the game away, which is why this particular 

technique (trying to echo what the player typed in the player character's response) is 
not really satisfactory, unless you're trying to represent your NPC as an eccentric old 



99

buffer who displays his confusion by talking like this. It's usually rather better to show 
non-commital responses to the effect that the NPC doesn't hear the question, refuses 
to answer, mutters an inaudible reply, becomes distracted, or says something so 
convoluted that you fail to understand it. In such cases it isn't really practicable to 
give the full question asked by the player character, so you either have to omit it, or 
represent it in indirect speech (e.g. "You ask your question and…") or have the NPC 
interrupt it half way through, (e.g. "What do you think about…?" you begin. "I don't," 
he interrupts, "Thinking's for intellectuals, and I sure as hell aint one of them.") As an 
exercise you may wish to devise your own list of default ask responses for our burner 
to replace the slightly dodgy ones shown above. 

 Now the time has come to get the charcoal burner to tell us about himself (in 
response to the player typing ask burner about himself). This doesn't require us to 
define a special himself object or topic, since the parser will recognize ask burner 
about himself as equivalent to ask burner about burner. We simply need to add an 
AskTopic with burner as its matchObj:
++ AskTopic @burner 
 "<q>My name's Heidi.</q> you announce. <q>What's yours?</q><.p> 
 <q><<burner.properName>>,</q> he replies, <q>Mind you, it'll soon be  
 mud.</q>"   
;

For clarity of code structure, it might be a good idea to put this just before our 
catchall DefaultAskTellTopic. The one point to note here is the use of 
<<burner.properName>> rather than simply Joe Black. The advantage of doing it this 
way is that if we later decide we want to call the charcoal burner 'Fred Bloggs' or 
'Ebenezer Oddball Sidewinder Bumblebotham' instead, we need only change the 
value of the burner object's properName property, rather than having to hunt down and 
change every occurrence of the string 'Joe Black'. 

Joe's statement (let's stick with calling him Joe) that his name will soon be 
mud invites the question why, but this doesn't seem to be the sort of question that 
naturally fits the ask about format: ask joe about mud, for example, wouldn't read 
right. What we'd really like is to be able to ask why, but for this to be a valid question 
only at this point in the conversation. Fortunately TADS 3 makes this possible 
through a mechanism called conversation nodes used in conjunction with 
SpecialTopics. A conversation node represents a particular point in the conversation 
(such as here, when Joe tells us his name will be mud) at which particular responses 
make sense which might not make sense elsewhere. Another example might be when 
an NPC asks a question requiring a yes or no answer: it makes sense to answer yes or 
no at that point, but it probably would have made no sense to do so on the previous 
turn, and the moment when it makes sense may have passed by the next turn. For 
something more complicated than a straightforward 'yes' or 'no' response, we can 
define a SpecialTopic, which in principle allows the player character to ask any 
question or make any reply we like (though in practice we'll want to restrict their 
complexity), with the restriction that these responses are only valid while their 
Conversation Node is active (because after that the conversation will have moved on, 
and before that the NPC hadn't yet made the remark to which these are potentially 
relevant responses). 

This may become clearer with an example. What we want to do is to allow 
Heidi  to ask why Joe thinks his name will be mud. To do this we need to define a 
conversation node (which we'll call 'burner-mud') and add a couple of SpecialTopics 



100

to it to handle questions like ask why. We also need to tell the game when to enter the 
'burner-mud' conversation mode. This can be done by use of the <.convnode name> 
tag, where name is the name of the conversation node we want to enter. We use it by 
including it in the output string at the appropriate point: 

 
++ AskTopic @burner 
 "<q>My name's Heidi.</q> you announce. <q>What's yours?</q><.p> 
 <q><<burner.properName>>,</q> he replies, <q>Mind you, it'll soon be  
 mud.</q> <.convnode burner-mud>" 
;

The definition of the ConvNode object is pretty minimal. The SpecialTopics 
require a little more attention, and we add a DefaultAskTellTopic at the end to ensure 
that the player stays in the ConvNode until he or she asks the question we want asked: 

 
+ ConvNode 'burner-mud'; 
 
++ SpecialTopic, StopEventList     
 'deny that mud is a name'     
 ['deny', 'that', 'mud', 'is', 'a', 'name']    
 [

'<q>Mud! What kind of name is that?<q> you ask.<.p> 
 <q>My name -- tonight.</q> he replied gloomily. <.convstay>', 
 '<q>But you can\'t <i>really</i> be called <q>Mud</q></q> you  
 insist.<.p> 
 <q>Oh yes I can!</q> he assures you. <.convstay>' 
 ]
;

++ SpecialTopic 'ask why' ['ask', 'him', 'why'] 
 "<q>Why will your name be mud?</q> you want to know.<.p> 
 He shakes his head, lets out an enormous sigh, and replies, 
 <q>I was going to give her the ring tonight -- her engagement ring -- 
 only I've gone and lost it. Cost me two months' wages it did. And 
 now she'll never speak to me again,</q> he concludes, with another 
 mournful shake of the head, <q>never.</q>" 
;

++ DefaultAskTellTopic 
 "<q>And why does...</q> you begin.<.p> 
 <q>Mud.</q> he repeats with a despairing sigh. <.convstay>" 
;

Note that there is only one + sign in front of the ConvNode. This is because here 
we are putting the ConvNode directly inside the actor (in this case the burner), not any 
of its actor states. It is also legal (though never necessary) to locate a ConvNode in an 
ActorState.

We should spend a few minutes thinking about how all this works. First, since 
the player cannot be expected to guess what wording will trigger our special topics, 
we need to provide some kind of prompt. This is what the single-quoted strings 
immediately after the class names do (the strings in the name property of the 
SpecialTopic objects). These strings need to be of a form that make sense after "You 
could…"; in this case the player will be prompted with: 

 
(You could deny that mud is a name, or ask why.) 
 
The list of strings in square brackets (the keywordList property) is then the list 

of words (or 'tokens') that the parser will check for in deciding whether to match a 



101

given SpecialTopic. It is not necessary that the player types all the words in the list 
for a match to take place – in this instance one or other of the SpecialTopics will be 
matched if the player simply types deny or mud or why, for example; but a match 
will not take place if the command contains any words not in the list. For example if 
the player types deny mud a proper name the parser will respond with: 

 
The word "proper" is not necessary in this story. 
 
The only way to try to avoid this it to be as careful as possible in the list of 

strings you include in the keywordList; in this instance we have mostly just duplicated 
the words that will appear in the prompt, but it seems likely that the player might try 
something else (and you can be sure than many players will), we can always add more 
words to these lists (e.g. 'him' between 'ask' and 'why'). Note also that the list of the 
words in the keywordList property must be separated by commas, which can often be 
surprisingly easy to forget. 

Everything else about the SpecialTopics works in the same way as for other 
TopicEntries. We supply the 'deny mud is a name' topic merely to give the player the 
appearance of having an option at this point; a prompt that merely said "(You could 
ask why)" would look a bit too directive. We use the <.convstay> tags in the 'deny 
mud' topic and the DefaultAskTellTopic to try to prevent the player from leaving the 
conversation node until he or she has asked why and so given Joe a chance to start 
telling his sorry tale (the player could just walk away and terminate the conversation 
without learning about the ring, but one hopes that most players' natural curiosity will 
prompt them to ask why first). 

Since the player could type deny mud is a name more than once, we provide 
more than one response to it. Once he or she types ask why, however, the game will 
leave the conversation node after displaying the response, so there's no need for more 
than one response. 

One further point to note is the use of double dashes (--) in the text of various 
responses. TADS will automatically convert each pair of dashes into one long dash, 
which looks better in the output than a short dash. 

Finally, note that normally a Conversation Node will normally only last for 
one turn. That is why we needed to insert all those <.convstay> tags to keep this node 
active until the player asks the question we want asked. But we could change the 
default behaviour by setting the ConvNode's isSticky property to true; in that case the 
Conversation Node would remain active until we explicitly left it, either by switching 
to another node, or by using a tag such as <.convnode nil> to leave the current node 
without entering another.32 You might like to experiment with changing the code to 
use this alternative approach to check that you can get it to work. 

The next thing that's likely to occur to the player is to ask burner about ring.
There's an important story to be told here, so this guide will need to provide it's own 
version, but before seeing what it is, you might first like to try defining an AskTopic of 
your own to handle this. For the sake of argument, assume that Heidi asks "What 
happened to the ring – how did you manage to lose it?", and try devising your own 
answer. Then check that Joe responds to ask burner about ring as you intended. 
 
32 This is fact makes the NPC's current ConvNode nil – i.e. tells the program that the NPC is no longer 
in a Conversation Node – but only because there probably isn't a Conversation Node with 'nil' as its 
name; any non-existent ConvNode name would have done as well, but 'nil' serves best to make the 
purpose clear. 



102

The answer we actually need here, since it's important to our plot, may be 
supplied thus (this time nested inside burnerTalking again, so put it just after the 
definition of ++ AskTopic @burner): 

 
++ AskTellTopic, StopEventList @ring 
 [

'<q>What happened to the ring -- how did you manage to lose it?</q> you  
 ask.<.p> 
 <q>You wouldn\'t believe it.</q> he shakes his head again, <q>I took it  
 out to take a look at it a couple of hours back, and then dropped the 
 thing. Before I could pick it up again, blow me if a thieving little 
 magpie didn\'t flutter down and fly off with it!</q>', 
 '<q>Where do you think the ring could have gone?</q> you wonder.<.p> 
 <q>I suppose it\'s fetched up in some nest somewhere,</q> he sighs,  
 <q>Goodness knows how I\'ll ever get it back again!</q>', 
 '<q>Would you like me to try to find your ring for you?</q> you  
 volunteer earnestly.<.p> 
 <q>Yes, sure, that would be wonderful.</q> he agrees, without sounding 
 in the least convinced that you\'ll be able to. ' 
 ]
;

There's one problem with this (actually, there's two, but we'll come to the 
second one in a minute). This part of the conversation presupposes that Joe has told 
Heidi the sad story of how he came to lose the ring, but that she hasn't found it yet. 
Although events could happen that way round, it's perfectly possible that the player 
could locate the ring before getting into conversation with Joe. That's easy enough to 
test for – if the ring has been found gPlayerChar.hasSeen(ring) will be true, 
otherwise it will be nil. But where do we put this test without a lot of clumsy coding? 
Once again TADS 3 comes to our rescue with a very neat solution, we simply use an 
AltTopic (directly after the AskTellTopic we've just defined): 

 
+++ AltTopic 
 "<q>I found a ring in a bird's nest, up a tree just down there.</q> you 
 tell him, pointing vaguely southwards, <q>Could it be yours?</q><.p> 
 <q>Really?</q> he asks, his eyes lighting up with disbelieving hope, 
 <q>Let me see it!</q>" 
 isActive = (gPlayerChar.hasSeen(ring)) 
;

There's no need to code either the commands or the object the AltTopic is to 
respond to, it will respond to whatever the TopicEntry it's contained in responds to, 
provided that its isActive property is true. If its isActive property is true then it will 
be used in preference to the TopicEntry in which it is contained. In this case we want 
the AltTopic to be used instead of its main AskTellTopic if (and only if) Heidi has 
actually found the ring, which we achieve with the line isActive = 
(gPlayerChar.hasSeen(ring)). Incidentally, this is why we made the topic an 
AskTellTopic instead of simply an AskTopic; once Heidi has found the ring the player 
is just as likely to tell burner about ring as ask burner about ring.

If you now compile and run the game, you should soon encounter the second 
problem. If Heidi has found the ring when she asks or tells Joe about it, everything 
should work as expected, but if she hasn't, then asking (or telling) the charcoal burner 
about the ring works just like asking or telling him about a topic we haven't defined. 
This makes sense before Heidi has got Joe to tell his sorry tale, since she doesn't know 



103

there's a ring to ask about (which is why the library handles it this way), but once Joe 
has mentioned his ring she ought to be able to ask about it. 

The TADS library keeps track of which things an actor knows about through 
objects' isKnown property, which should be tested through actors' 
actor.knowsAbout(obj) method. Actually, the standard library only keeps track of 
what the Player Character knows about by this means, but provides the actors 
parameter in case  some brave soul wants to expand the system to a tracking NPCs' 
knowledge as well. By default actor.knowsAbout(obj) is true either if obj has been 
seen by the Player Character or if obj.isKnown has been set to true. The correct way 
of achieving the latter is by calling gPlayerChar.setKnowsAbout(obj). This seems 
rather long-winded for what is likely to be a quite commonly needed operation, so the 
library offers an abbreviated form (a macro) gSetKnown(obj). This macro definition is 
a preprocessor directive that means roughly 'whenever you see gSetKnown(obj) in the 
source code, replace it with gPlayerChar.setKnowsAbout(obj) before presenting it to 
the compiler, where obj can be any object name we care to use'. In other words, all we 
have to do to fix things is to add <<gSetKnown(ring)>> to the end of the output string 
of the appropriate SpecialTopic, thus: 

 
++ SpecialTopic 'ask why' ['ask','why'] 
 "<q>Why will your name be mud?</q> you want to know.<.p> 
 He shakes his head, lets out an enormous sigh, and replies, 
 <q>I was going to give her the ring tonight -- her engagement ring -- 
 only I've gone and lost it. Cost me two months' wages it did. And 
 now she'll never speak to me again,</q> he concludes, with another 
 mournful shake of the head, <q>never.</q><<gSetKnown(ring)>>" 
;

Now, once Joe has mentioned the ring, Heidi will be able to ask about it and 
get a sensible response, even is she hasn't found the ring yet. If you recompile and 
play the game with these changes, you should find it all works properly. 

Well, not quite all, perhaps. Although the charcoal burner has told Heidi that 
his name is 'Joe Black', he continues to be described as 'the charcoal burner'. Not only 
that, but the parser refuses to recognize him if we try to refer to joe, black or joe 
black. We'll fix these problems in the next section. 

 
5. What's in a Name? 

Once the charcoal burner has revealed his name, we want three things to 
happen. First, we want his short name (the one that's displayed in room descriptions) 
to change from 'the charcoal burner' to 'Joe Black'; second we want the program to 
treat the name as a proper name, so we don't get messages like 'The Joe Black is 
holding a spade' or 'You see a Joe Black here'; and third, we want the parser to 
recognize joe, joe black or black as referring to Joe. The first two steps are 
straightforward. The third is a little more complicated. 

To carry out the first two steps we simply need to execute: 
 
isProperName = true; 
name = properName; 
 
You might think that you could achieve the third by adding 'Joe Black' to the 

burner's vocabWords property somehow, but it's not quite that easy. What we actually 
need to do is to add them to the game's dictionary. To add a word to the dictionary we 



104

need to call cmdDict.addWord(obj, word, &wordtype) where obj is the object we want 
this word to apply to, and wordtype is the type of word it is (adjective or noun). 
Moreover, we can't simply add the contents of the properName property into the 
dictionary – it must be added word by word (token by token), not as a complete 
phrase. Fortunately the library provides a means of extracting the individual tokens 
from a string; we need to use Tokenizer.tokenize(properName), which returns a list 
of tokens. Assuming we assign this list to a local variable tokList, we can get at the 
parsed token at position i (in a form suitable for adding to the dictionary) by calling 
getTokVal(tokList[i]). But just when you thought it was getting far too complicated 
to follow, there's another complication. Logically, all proper names are nouns, so we 
should add them to the dictionary as nouns. But if we add them all to the dictionary as 
nouns the parser will recognize joe or black as referring to Joe, but not joe black,
since it firmly believes that a noun phrase should only contain one noun.33 It will thus 
accept joe and black as alternatives, but not both together. There is an extremely 
fiendish way of getting round this by defining another Grammar Production, but that's 
way beyond the scope of this Getting Started guide, so we'll settle for a hack instead, 
and that is to add every name but the last  into the library as an adjective as well as a 
noun (which means that the parser will quite happily recognize joe black even though 
it does so on the erroneous basis of believing that joe is an adjective qualifying black 
– if one can talk about the beliefs of a parser). 

Since finding out an actor's name some way through a game is a situation that 
could arise quite often, it makes sense to make all this happen as a modification of the 
Actor class (which will then work for everything of class Actor or one of is 
subclasses) rather than something specific to the burner object. The appropriate code 
then looks like this: 

 
modify Actor 
 makeProper 
 {

if(isProperName == nil && properName != nil)  
 {

isProperName = true; 
 name = properName; 
 local tokList = Tokenizer.tokenize(properName); 
 for (local i = 1, local cnt = tokList.length() ; i <= cnt ; ++i) 
 {

if(i < cnt) 
 cmdDict.addWord(self, getTokVal(tokList[i]), &adjective); 
 cmdDict.addWord(self, getTokVal(tokList[i]), &noun); 
 }

}
}

;

The purpose of the check if(isProperName == nil && properName != nil) is 
to stop the makeProper method doing anything either if the actor has already been 
defined as having a proper name (perhaps through a previous call to makeProper) or if 
the actor has no properName property defined.  

Apart from cmdDict.addWord(), the only thing that might be really unfamiliar 
here is the for loop towards the end of the makeProper method. If you didn't read 
about it in chapter 1 (or you did but you've now forgotten exactly how it works), now 
might be a good time to refer back to p. 27 to see how it works. 
 
33 The exception to this is in expressions like “pile of leaves”; if an object is defined with both ‘pile’ 
and ‘leaves’ as its nouns, it will respond to ‘pile’, ‘leaves’ or ‘pile of leaves’. 



105

You should copy the above code into your source file (perhaps near the top 
after the definition of the endGame function) and check that it works. And then I'll 
confess that all along there was a somewhat simpler way we could have achieved 
almost the same effect without wither that complicated for loop or cmdDict.addWord. 
Instead we could have replaced all the code after name = properName; (apart from the 
necessary closing braces) with initializeVocabWith(properName);, and it would have 
worked just as well. The only difference is that 'joe' would have been entered into the 
dictionary only as an adjective, and not also as a noun, but in practice that almost 
certainly doesn't matter. You may want to test this out. 

But you can't test it out just yet: for either method to actually do anything in 
our program we need to call it somewhere. We can do this by simply adding 
<<burner.makeProper>>  in the response string of AskTopic @burner, perhaps just after 
<.convnode burner-mud>.

There's just one more job we need to do before we can leave Joe Black. As 
things stand at the moment, if the player asks Joe about himself a second time, he'll 
still introduce himself the same way, which we obviously don't want. We could fix 
this by using a EventList, since although <<burner.makeProper>> won't work inside a 
single-quoted string, we can get round this by using a function within the EventList;34 
but rather than introduce that complication right now, we'll simply use another 
AltTopic. Since the burner's isProperName property is nil before he introduces 
himself and true afterwards (thanks to <<burner.makeProper>>), we can use 
burner.isProperName as the test in the isActive property of the AltTopic. The 
AskTopic and AltTopic then look like this: 

 
++ AskTopic @burner 
 "<q>My name's Heidi.</q> you announce. <q>What's yours?</q><.p> 
 <q><<burner.properName>>,</q> he replies, <q>Mind you, it'll soon be  
 mud.</q> <.convnode burner-mud><<burner.makeProper>>" 
;

+++ AltTopic, StopEventList 
 [

'<q>Have you been a charcoal burner long?</q> you ask.<.p> 
 <q>About ten years.</q> he replies. ', 
 '<q>Do you like being a charcoal burner?</q> you wonder, <q>It seems 
 rather messy!</q><.p> 
 <q>It\'s better than being cooped up in some office or factory all day, 
 at any rate.</q> he tells you. ', 
 '<q>What do you do when you\'re not burning charcoal?</q> you  
 enquire.<.p> 
 <q>Oh -- this and that.</q> he shrugs. ' 
 ]

isActive = (burner.isProperName) 
;

One further refinement you could add, which I'll leave as an optional exercise 
for the reader, is to add SuggestedAskTopic to the class list of each of the main topic 
entries in the burnerTalking state. If you do that you'll need to add a name property to 
each of the AskTopic definitions, perhaps name = 'the smoke', name = 'the fire', 
name = 'the ring' and name = 'himself' as appropriate. The player can then use the 
topics command to see what topics Joe is likely to respond to. 
 
34 Syntactically this looks quite straightforward; we can use the construction {: “double-quoted 
string” } inside an EventList anywhere we could have used a single-quoted string, but it’s a bit 
complicated to explain why this works at this point. 



106

Another optional exercise you might like to try is expanding the range of 
topics to which Joe will respond meaningfully. You can do this with a mix of 
AskTopics, TellTopics, AskTellTopics, GiveTopics, ShowTopics and GiveShowTopics 
as the mood takes you. You might also want to replace the DefaultAskTellTopic with 
a separate DefaultAskTopic and DefaultTellTopic. You're not restricted to having Joe 
talk about objects defined in the game. If, for example, you think he should have an 
opinion on Oxford Blue (a type of cheese), you could define an Oxford Blue topic 
using the Topic class: 

 
tOxfordBlue: Topic 'oxford blue/cheese'; 
 
The Topic class can be used for any concrete or abstract topic not otherwise 

represented in the game. Unlike game objects (i.e. those derived from Thing, which 
Topic isn't), all Topics start out known to the player character unless you define 
otherwise, which means that Heidi doesn't actually have to have encountered any 
Oxford Blue cheese in the game in order to ask Joe about it. Incidentally, there's 
nothing magic about the t at the start of the object name here (tOxfordBlue), it's just a 
convention I use to distinguish Topics from other types of object. 

One further feature you may want to try out is the <.reveal> tag, which you 
can use to keep track of what's already been said. This works by keeping track of a list 
of arbitrary strings (or 'keys') that have been revealed, either through the gReveal() 
macro, for example gReveal('foo'), or through a <.reveal foo> tag inserted into a 
string (either single-quoted or double-quoted). You can then test whether the key has 
been revealed using gRevealed(), e.g. in a declaration like isActive = 
gRevealed('foo') on an AskTopic. For example, at the end of Joe's reply to Heidi's 
question on Oxford Blue cheese, you might append a <.reveal oxford-blue> tag so 
that other AskTopics or AltTopics can test whether this part of the conversation has 
taken place. 

At this point you might like to experiment with increasing Joe's conversational 
range before moving on to the next chapter. If you want to be particularly 
adventurous, after trying out a few AskTopics and TellTopics, you could try adding 
some AltTopics and maybe even the odd extra ConvNode or two, complete with some 
more SpecialTopics.

Our game has now reached a point at which, barring full testing, adding in 
more decoration objects and the like, it could be regarded as complete. It can be 
played through from start to finish, our NPC provides a reasonably good explanation 
of the plot (well, the bit about the magpie may be a bit far-fetched, but if Rossini can 
get away with it I don't see why we shouldn't), and there's a reasonable closure when 
the Heidi hands the ring over to poor old Joe. As a tutorial game, we could simply 
leave it there, even though it's never going to win any prizes in IF competitions. In the 
following chapters, however, we'll complicate things for Heidi by putting more 
obstacles between her and the ring, not because this will transform the game into a 
marvellous one (that would require a miracle), but because it will provide a 
convenient vehicle for introducing some further features of TADS 3. 

 



107

Chapter Six -   Expanding the Horizons 
 

1. Doors and Windows 

If you've managed to follow this Guide so far, you should have grasped most 
of the basics of programming in TADS 3. In the present chapter we'll look at more 
features of the library, but we'll move on a bit more briskly, on the assumption that 
much of the code should start to be self-explanatory. 

In order to make Heidi's life more difficult, we'll make it harder for her to get 
hold of the chair she needs to climb the tree. To do that, we simply need to supply the 
cottage with a locked front door and hide the key in some out-of-the-way place.  

The first thing to realize is that doors in TADS 3 are normally two-sided. That 
is, they are generally represented not by one object, but by two, the two objects being 
the two sides of the door. At first sight this may seem something of an unnecessary 
complication, and it does require a little more work, but not as much more work as 
you might think. Provided the two sides of the door are properly set up, the library 
will take care of keeping them in sync (i.e. ensuring that one side is open or closed or 
locked or unlocked when the other is). It will also take care of making travel through 
one side of the door result in the traveler arriving in the location of the other side. One 
reason for doing it this way (i.e. with each side of the door represented by a separate 
object) is that it allows more flexibility; the two sides of a door often aren't identical: 
they may, for example, be painted different colours, or they may use different locking 
mechanisms, say with one side requiring a key and the other using a paddle. 

We'll start by adding the oustide of the front door (which should be contained 
in outsideCottage): 

 
+ cottageDoor : LockableWithKey, Door 'door' 'door' 
 "It's a neat little door, painted green to match the window frame. " 
 keyList = [cottageKey] 
;

To make the door work, we also need to change the in property of 
outsideCottage to read cottageDoor instead of insideCottage. As noted above, we 
also need to define the other side of the door: 

 
+ cottageDoorInside : Lockable, Door -> cottageDoor 'door' 'door'; 
 

This needs to be located in insideCottage, and we need to change the out 
property of insideCottage to cottageDoorInside. The ->cottageDoor is a template 
shortcut for assigning cottageDoor to the masterObject property, which (a) keeps both 
sides of the door in sync (both open/closed and locked/unlocked) together, and (b) 
tells each door what its other side is (through code executed in the preinitialization 
routine, which we don't need to worry about). 

Note that we have defined the outside of the door as a LockableWithKey and 
the inside as simply Lockable; this reflects the way many house doors in fact behave 
(we don't need a key to lock or unlock the front door from the inside). Note also that 
the order of the classes here is important: Lockable, LockableWithKey or 
IndirectLockable must come before Door in this kind of declaration, or else the lock 
won't work. The short explanation for this is that Lockable, LockableWithKey and 



108

IndirectLockable are examples of mix-in classes (not derived from Thing) which 
must come before the any Thing-derived class with which they are combined.35 

Before this door will work, we have to define the key object. As a temporary 
measure (we'll move it elsewhere later), we'll do this with simply: 

 
cottageKey : Key 'small brass key' 'small brass key' @outsideCottage; 

 
Since Heidi's now locked out of the cottage (or would be if the key was not so 

readily in reach), an obvious thing for her to try is looking through the window to see 
what's inside. It's probably a good thing to allow this, since if she can see that the 
chair is there it will make it all the more obvious that it's worth going to look for the 
key. 

The question is, how should this be implemented? We could just write a 
LookThrough routine that displayed a pre-programmed message, but that's less than 
ideal, since the contents of the cottage could change as the player moves objects 
around. Writing a LookThrough routine that does the job properly is quite tricky, so 
for now we'll attempt something a little less ambitious: a window through which 
whatever is on the other side is visible. We'll return to a more sophisticated 
LookThrough later. 

To create a window through which the contents of another location are visible, 
we need to use a SenseConnector, and locate it in the two rooms joined by the 
window: 

 
cottageWindow : SenseConnector, Fixture 'window' 'window' 
 "The cottage window has a freshly painted green frame.  
 The glass has been freshly cleaned. " 
 connectorMaterial = glass 
 locationList = [outsideCottage, insideCottage] 
;

Since SenseConnector is a MultiLoc (an object that exists in more than one 
location) we do not define its location property; instead  we define its locationList 
to contain a list of the locations that contain the window, in this case the inside and 
outside of the cottage. The other important property to define here is 
connectorMaterial; the TADS 3 library defines a number of different materials that 
transmit the various senses in different ways. Glass is defined to be transparent to 
sight, but opaque to sound, smell and touch (the fact that real world glass may allow 
sound to pass need not concern us here, since in this case sight is the only sense we're 
worried about). This means that from outside the cottage the player character will be 
able to see anything located inside, and from inside, the player character will be able 
to see anything left directly outside, but that Heidi will not be able to smell, hear or 
touch anything through the window. 

If you compile and test the game now, you'll find that this works, but that 
objects visible through the window are listed in a less than ideal fashion. There are 
several steps we can take to improve that. You'll recall that we defined an 
initSpecialDesc on the chair. The first problem is that we'll now see that 
initSpecialDesc when Heidi is standing just outside the cottage: 

 

35 For the long explanation, see the article on Multiple Inheritance in the Technical Manual.



109

In front of a cottage 
You stand just outside a cottage; the forest stretches east. A short path leads round the 

cottage to the northwest.  
 

A plain wooden chair sits in the corner. 
 
This description is plainly inappropriate when the chair is being viewed 

through the window from outside. What we want is a different type of 
initSpecialDesc that's shown when the chair is viewed from a room other than the 
one in which it's actually located; for that we use remoteInitSpecialDesc. Add the 
following to the definition of the chair object: 

 
remoteInitSpecialDesc(actor) { "Through the cottage window you can 
 see a plain wooden chair sitting in the corner of the front room. "; } 

 
The actor parameter refers to the actor doing the looking, normally the player 

character. The parameter can be used to test where the chair is being viewed from; for 
example, if there were a second window looking into the room from the 
cottageGarden (we'll be this garden adding later, though not the second window), 
your remoteInitSpecialDesc(actor) routine could test for 
actor.isIn(cottageGarden) and actor.isIn(outsideCottage) and provide different 
descriptions for the two cases. In this case this is unnecessary, however, since 
outsideRoom is the only remote location from which the chair can ever be viewed. 

If you test the game now, you'll find the window works okay with the chair, 
but is not so good with portable objects. For example, if you drop the key outside the 
cottage and then go inside, you'll see the key listed as: 

 
In the in front of a cottage, you see a small brass key. 
 
Similarly if you leave the key inside the cottage and then go back outside, 

you'll find the key listed as: 
 
In the inside cottage, you see a small brass key. 
 
The library provides two ways to fix this: (1) you can give a room an 

inRoomName, which is the name to be used when an item is listed as being in that room 
when viewed from another location; or (2) you can define a custom 
remoteRoomContentsLister which defines how portable items will be listed when 
viewed in a remote location. If you use method (1) you define inRoomName on the room 
that's being viewed remotely; if you use method (2) you define the 
remoteRoomContentsLister on the room from which the remote viewing is taking 
place. In order to illustrate both methods we'll use method (1) for looking in through 
the window from the outside, and method (2) for looking out through the window 
from the inside. This means that both methods need to be implemented on 
insideCottage:
insideCottage : Room 'Inside Cottage' 
 "The front parlour of the little cottage looks impeccably neat.  
 The door out is to the east. "     
 out = cottageDoorInside 
 east asExit(out) 
 inRoomName(pov) { return 'inside the cottage'; } 
 remoteRoomContentsLister(other) 



110

{
return new CustomRoomLister('Through the window, {you/he} see{s}',  

 ' lying on the ground.'); 
 }
;

As before the pov parameter (in inRoomName) represents the point of view, and 
could be used to give a room different names depending on where it was being 
viewed from (e.g. on a long stretch of road you might want a particular stretch of road 
named as 'on the road to the south' when the pov is north of it and 'on the road to the 
north' when the pov is to the south of it). The other parameter of 
remoteRoomContentsLister is the other location that's being viewed from here, which 
would allow you to vary the lister according to which room's contents was being 
described; in this case the only other location visible from insideCottage is 
outsideCottage, so it's not necessary to make use of this parameter. The two 
parameters supplied to new CustomRoomLister are the prefix and suffix strings. This 
will result in message like: 

 
Through the window, you see a small brass key lying on the ground. 
 
Similarly, if the key is left inside the cottage, then from the outside you'd see: 
 
Inside the cottage, you see a small brass key. 
 
Both of these messages are substantial improvements over what we had 

before. We have still not implemented a response to explicitly looking through the 
window, but since this is rather trickier, we'll leave it till later. 

 
2. Crossing the Stream 

As the next step to making things more complicated for Heidi, we'll put the 
key in a field on the far side of a stream. First we need to add two extra locations to 
accommodate the stream: 

 
pathByStream : OutdoorRoom 'By a stream' 
 "The path through the trees from the southeast comes to an end on 
 the banks of a stream. Across the stream to the west you can see 
 an open meadow. " 
 southeast = fireClearing 
 west = streamWade 
;

streamWade : RoomConnector 
 room1 = pathByStream 
 room2 = meadow 
;

meadow : OutdoorRoom 'Large Meadow' 
 "This large, open meadow stretches almost as far as you can see 
 to north, west, and south, but is bordered by a fast-flowing stream 
 to the east. " 
 east = streamWade 
;

The reason for using the separate RoomConnector object, streamWade, will 
gradually become apparent. At the moment note that it simply connects the room in 



111

its room1 property to the room in its room2 property. It also furnishes an example of 
how we can set the direction property of a room to an explicit connector object. One 
further thing we need to do at this stage is to set the northwest property of 
fireClearing to pathByStream.

Next we'll move the small brass key to the meadow and tweak its properties a 
little. 

 
+ cottageKey : Key 'small brass brassy key/object/something' 'object' 
 "It's a small brass key, with a faded tag you can no longer read. " 
 initSpecialDesc = "A small brass object lies in the grass. " 
 remoteInitSpecialDesc(actor)  
 {

"There is a momentary glint of something brassy as 
 the sun reflects off something lying in the meadow across the stream. "; 
 }

dobjFor(Take) 
 {

action() 
 {

if(!moved)  
 addToScore(1, 'retrieving the key');  
 inherited; 
 name = 'small brass key'; 
 }

}
;

The reason for the special dobjFor(Take) routine is that if we let the key start 
with the name 'small brass key', it might give its presence away prematurely, so we 
give it about the vaguest name we can in its initial definition and then change it to a 
more meaningful name when it's picked up. Note that we have once again used 
remoteInitSpecialDesc, which (once we've done some more clever stuff) will be the 
description that's displayed when we view the key from a distance, in this case the 
other side of the stream. Note that this is a method, not a property, and it takes a 
single parameter pov (point of view). This parameter represents the actor who is doing 
the looking, and would allow you to alter the message displayed depending on where 
the actor was (e.g by testing for if(pov.isIn(pathByStream)) ). In this case the test is 
unnecessary, since there is only one location from which the key can be viewed 
remotely before it is moved.  

Now comes the clever stuff. In order to make objects in room A visible from 
room B we need to join the two locations together with a DistanceConnector; which is 
particular kind of SenseConnector (which we met before in connection with the 
cottage window); a SenseConnector can exist in two or more locations since it is a 
subclass of MultiLoc (more of which anon). A DistanceConnector has a library 
template that makes it exceedingly easy to define; all we need to add is: 

 
DistanceConnector [pathByStream, meadow]; 

 
The list in square brackets is in fact the locationList property, the name of 

which should be fairly self-explanatory. Note that DistanceConnector is a descendant 
of both MultiLoc, which is a mix-in class, and Intangible (since the connector has no 
physical presence). Another MultiLoc object we could use here would be a stream, 
which runs through both the rooms. And while we're at it, we'll make it possible for 
the player to cross the stream with the command cross stream.



112

stream : MultiLoc, Fixture 'stream' 'stream' 
 "The stream is not terribly deep at this point, though it's flowing 
 quite rapidly towards the south. " 
 locationList = [pathByStream, meadow] 
 dobjFor(Cross) 
 {

verify() {} 
 check() {} 
 action() 
 {

replaceAction(TravelVia, streamWade); 
 }

}
;

Note that being a MultiLoc object (like the DistanceConnector), the stream 
does not have a location property (its list of locations instead being held in 
locationList). Note also that for this to work properly, MultiLoc must come first in 
the class list; MultiLoc is a mix-in class that should always be combined with 
something else. 

Part of the value of defining a separate streamWade object now becomes 
apparent; it makes the coding of the action method of dobjFor(Cross) exceedingly 
simple. Instead of having to test for which side of the stream we're on to decide which 
side we need to end up on when we cross the stream, we simply TravelVia streamWade 
and leave streamWade to sort it all out. But as we'll see shortly,  that's only part of the 
story. 

In the meantime, there's another little matter we need to attend to. Unlike the 
other verbs we've used so far, there's no definition of Cross anywhere in the TADS 3 
library, so we have to create our own. For details of how to do this in general, see the 
Technical Manual (but there's no need to consult it right now – you can finish this 
guide first). Here we'll just list the steps for this simple case. 

First, we need to define both CrossAction and its associated grammar. A 
couple of library macros hide most of the complication of all this, and all we need 
write is: 

 
DefineTAction(Cross); 
 
VerbRule(Cross) 
 'cross' singleDobj 
 : CrossAction 
 verbPhrase = 'cross/crossing (what)' 
;

We use the DefineTAction() macro to define a Transitive Action (hence 
TAction), which means an action taking a direct object (as opposed to an IAction like 
Look which takes no objects, or a TIAction like put x on y which takes both a direct 
object and an indirect object). We next use the VerbRule() macro to define the 
grammar for the command, that is the form of words that a player can use to invoke it. 

The name of the VerbRule (here Cross) can be anything we like, so long as it's 
unique among the VerbRule names in our game. It doesn't actually need to match the 
name of our action, it's just (a) a convenient way of ensuring a unique VerbRule name 
and (b) an obvious way of making it clear what the VerbRule is for. After naming the 
VerbRule we next need to define its grammar, i.e. the phrase that the player must enter 
to invoke this command. This will normally consist of a fixed element, such as the 
name of the verb, in this case 'cross', followed by a placeholder for the noun or nouns 



113

that the player wants the command to apply to. For a TAction this placeholder can 
either be singleDobj (meaning that only one direct object is allowed) or dobjList 
(meaning that the command can be applied to several direct objects at once, as in take 
the red ball, the long stick, and the bent banana). 

It would make no sense to cross several objects at once, so we definitely want 
singleDobj rather than dobjList here. We could, if we wanted, have defined more 
synonyms for the verb, e.g. ('cross' | 'ford') singleDobj, but once more I'll leave 
that as an exercise for the interested reader. The point to note is that if we do want to 
define alternative phrasings, we use a vertical bar (|) to separate the alternatives, and 
brackets to group them. The brackets would be necessary in the foregoing example, 
since without them we'd have 'cross' | 'ford' singleDobj, which would mean 
'cross' or 'ford something', rather than 'cross something' or 'ford something', as we'd 
actually want. 

After the definition of the grammar for the command comes a colon followed 
by the name of the action class, which is the name we gave the action plus the word 
'Action' appended, hence CrossAction. If you think this looks rather like declaring our 
VerbRule (strictly speaking, our grammar definition) to be of class CrossAction, then 
you're right; but again this isn't an issue that need concern us here, beyond noting that 
the DefineTAction(Cross) macro in fact defines a new class called CrossAction as a 
subclass of TAction.

We then have to define a verbPhrase so that the parser can construct certain 
messages, such as '(first crossing the stream)' or 'What do you want to cross?' if it 
needs to. The correct format for a verb phrase for a TAction should be reasonably 
clear from the example shown: first the infinitive (without 'to') followed by the 
present participle with a slash (oblique) in between (hence  'cross/crossing'). Then a 
placeholder for a direct object, enclosed in brackets (hence '(what)'). Note that this 
placeholder may be used by the parser to construct a question about a missing direct 
object ('What do you want to cross?'), so for verbs that were more likely to be applied 
to people (e.g. 'thank') you'd want to use '(who)' or, even more correctly, '(whom)' 
rather than '(what)'. 

One more step we have to take is to define what happens when cross is used 
with any noun other than the stream, which we can do by modifying the definition of 
the Thing class: 

 
modify Thing 
 dobjFor(Cross) 
 {

verify() {illogical('{The dobj/he} is not something you can cross. ' ); } 
 }
;

If you now compile and run the game it should all work, though getting across 
the stream doesn't seem to be much of a puzzle. We can make it more of one if Heidi 
has to wear a pair of old boots before she can cross. To start with we'll leave the boots 
lying by the side of the stream. Then all we have to do is to modify the streamWade 
object so that it only allows anyone to pass when they're wearing the boots. 

Before looking at the solution below, you may like to try to work out how to 
do all this yourself. The only new thing about the boots is that we need to make them 
of class Wearable, so Heidi can put them on. The trick is then to work out how to 
prevent Heidi from crossing the stream unless she is wearing the boots. You should be 
able to work it out by analogy from the way we prevented Heidi from climbing the 
tree unless she's standing on the chair. 



114

First here's the boots; as noted above the only thing new about them is that we 
make them of class Wearable, so Heidi can put them on: 

 
boots : Wearable 'old wellington pair/boots/wellies' 'old pair of boots' 
 @pathByStream 
 "They look ancient, battered, and scuffed, but probably still waterproof. " 
;

Next we need to modify the RoomConnector so that Heidi can only cross the 
stream when she's wearing the boots: 

 
streamWade : RoomConnector 
 room1 = pathByStream 
 room2 = meadow 
 canTravelerPass(traveler) { return boots.isWornBy(traveler); } 
 explainTravelBarrier(traveler)  
 {

"Your shoes aren't waterproof. If you wade across you'll get your feet 
 wet and probably catch your death of cold. ";  
 }
;

And that's all there is to it. If you try the game again you'll find you can't cross 
the stream (in either direction) unless you're wearing the boots. The next job is to hide 
the boots in a less obvious place. 

 
3. Burying the Boots 

We'll hide the boots by burying them in a cave and then provide a means of 
digging them out again. In the next chapter we'll give the cave a dark interior so we 
can look at the handling of light sources, but so as not to handle too many new 
problems at once, we'll leave that to one side for now, and concentrate on giving the 
cave a floor that can be excavated. 

But first we have to add the cave and a means of getting to it. Again, you may 
like to try doing this yourself rather than just copying the code overleaf. Create a 
room to the south of forest called outsideCave, and give it an appropriate name and 
description. Then create a room called insideCave (representing the inside of the 
cave) to the south of that. Be sure to implement all the appropriate connections 
(including one south from forest!). Also, give some thought to which class is most 
appropriate to each of these two new locations, and also whether it may be 
appropriate to use the asExit() macro to allow alternative commands for moving 
between them. 

Once you've done that and checked that it all works, you'll probably have an 
outsideCave location that mentions a cave somewhere in the description – at least, 
you certainly should do. So what if the player types the command enter cave? You'd 
better add another object to handle that. 

Finally, if you're feeling really adventurous, you could try to devise a way of 
burying the boots in the cave so that they are only discovered when Heidi digs in the 
ground with a spade (which you'll need to provide). For inspiration, you could look 
back at the way we hid the ring in the nest, or the stick in the pile of twigs. 

 



115

Here's one way of implementing the new rooms: 
 

outsideCave : OutdoorRoom 'Just Outside a Cave' 
 "The path through the trees from the north comes to an end 
 just outside the mouth of a large cave to the south. Behind the cave 
 rises a sheer wall of rock. " 
 north = forest 
 in = insideCave 
 south asExit(in) 
;

+ Enterable 'cave/entrance' 'cave' 
 "The entrance to the cave looks quite narrow, but probably just wide 
 enough for someone to squeeze through. " 
 connector = insideCave 
;

insideCave : Room 'Inside a large cave' 
 "The cave is larger than its narrow entrance might lead one to expect. 
 Even a tall adult could stand here quite comfortably, and the cave  
 stretches back quite some way. " 
 out = outsideCave  
 north asExit(out) 
;

There's nothing that requires comment here, apart from the need to add south 
= outsideCave to the definition of the forest room (whose description already 
mentions a path to the south that might have seemed a bit superfluous up to now.) 

Now let's make a number of assumptions about how we want to handle the 
action of digging. The library provides both Dig and DigWith verbs (e.g. dig ground 
and dig ground with spade). Let's assume that in order to be able to dig, it's 
necessary to be holding  a spade, and that there's only one spade object in the game. 
Let's further assume that although we should allow the player to dig ground with 
spade, it's unnecessarily pedantic to insist on that form of command and refuse to 
respond to dig ground when the spade is being held (if someone's holding a spade it's 
pretty obvious that's what they want to dig with). Finally, let's assume that there may 
in general be more than one place where we might want the player to be able to dig, 
so that it would be useful to define a Diggable class that can handle all this. The class 
might then look like this: 

 
class Diggable : Floor 
 dobjFor(DigWith) 
 {

preCond = [objVisible, touchObj]     
 verify() {} 
 check() {} 
 action() 
 {

"Digging here reveals nothing of interest. "; 
 }

}
;

At first sight, this class definition may look a little surprising, since we have 
done nothing to handle the case where the player simply types dig ground. In fact this 
is already catered for by the library, which defines the action method of Dig on the 
Thing class as: action() { askForIobj(DigWith); }. This more or less does what it 



116

looks like: if the player types dig whatever without specifying an indirect object, (i.e. 
an implement to dig with) the game will respond with "What do you want to dig in it 
with?". If the player then types the name of an implement, such as "spoon", the game 
will treat the whole command as if it were dig in whatever with spoon. On the other 
hand, if one and only one suitable digging implement is to hand, then the parser will 
automatically assume that's what the player wants to use. In this game the only 
suitable digging implement is the spade, so if the player types dig in ground when 
Heidi is already holding the spade, the parser will automatically select the spade and 
treat the command as if it had been dig in ground with spade; this is precisely what 
we want. Normally we'll override the dobjFor(DigWith) action() method on the 
specific object to provide a particular response, but we provide a default response on 
the class.   

In order to dig in something you must be able to touch it. In practice, you 
probably need to be able to see it as well. We take care of enforcing these conditions 
with the line preCond = [objVisible, touchObj], which adds a couple of 
preconditions to the digging action on the digging class. Although it's possible (and 
not actually all that difficult) to define preconditions of your own, the common ones 
are already defined for you in the library. In particular, the objVisible precondition 
prevents the action from proceeding if the object is not visible for any reason (this 
will become relevant when we go on to make the cave dark). Similarly touchObj will 
not allow an actor to dig in the ground unless the actor is in a position to touch the 
ground (this precondition will not strictly affect anything in this game, but we'll add it 
anyway for the sake of completeness and in order to illustrate the principle). 

We next need to define the spade: 
 

spade : Thing 'sturdy spade' 'spade' 
@insideCave 
 "It's a sturdy spade with a broad steel blade and a firm wooden handle. " 
 initSpecialDesc = "A sturdy spade leans against the wall of the cave. "  
 iobjFor(DigWith) 
 {

verify() {} 
 check() {} 
 }
;

Placing the spade inside the cave is a temporary measure to make it easy to 
test that the digging operation works as we intend. The only point to note about the 
definition of this object is the empty verify() and check() methods we supply for 
iobjFor(DigWith) to ensure that the spade raises no objection to be used as a digging 
implement (i.e. the indirect object of a dig with command). 

Now we need to supply our Diggable object, the ground. Since digging the 
ground will create a hole, and a pair of boots will be found lurking in the hole, we 
may as well deal with them at the same time. 

 
caveFloor : Diggable 'cave floor/ground' 'cave floor' 
 @insideCave 
 "The floor of the cave is quite sandy; near the centre is 
 <<hasBeenDug ? 'a freshly dug hole' : 'a patch that looks as if it has 
 been recently disturbed'>>. " 
 hasBeenDug = nil 
 dobjFor(DigWith) 
 {

check() 
 {

if(hasBeenDug) 



117

{
"You've already dug a hole here. "; 

 exit; 
 }

}
action() 

 {
hasBeenDug = true; 

 "You dig a small hole in the sandy floor and find a buried pair of 
 old Wellington boots. "; 
 hole.moveInto(self); 
 addToScore(1, 'finding the boots'); 
 }

}
;

hole : Container, Fixture 'hole' 'hole' 
 "There's a small round hole, freshly dug in the floor near the centre 
 of the cave. " 
;

+ boots : Wearable 'old pair of wellington boots/wellies' 'old pair of 
boots'   
 "They look ancient, battered, and scuffed, but probably still waterproof. " 
 initSpecialDesc = "A pair of old Wellington boots lies in the hole. " 
;

Again, there's little that should require much explanation here. Note that we 
have moved the original boots and put them inside the hole, giving them an 
appropriate initSpecialDesc. Since the act of digging undoubtedly will be to create a 
hole, we make the creation of the hole (simulated by moving the hole object into the 
floor) the main effect of the DigWith action – again note that we do this by using the 
hole's moveInto method, not by setting its location property directly. We make the 
hole both a Container (so the boots can be in it) and a Fixture (so we can't carry it 
away). We use the check() method to trap a second or subsequent attempt to dig in 
the floor, although it would have worked just as well to put the same test in the 
action() method – in this case it's simply a matter of preference (I slightly prefer it 
the way I did it because the message displayed in the check method implies that a 
second or subsequent request to dig in the cave floor is not even attempted, so there 
should be no action notifications). The desc property of the floor makes use of the 
double angle brackets, the ?: ternary operator and the custom hasBeenDug property to 
display an appropriate description. 

This almost works fine, apart from one thing: as you'll no doubt discover, it 
you haven't tried it already, when you try to dig floor with spade you'll be greeted 
with the message: 

 
Which floor do you mean, the cave floor, or the floor? 
 
This is somewhat annoying, to say the least. The reason for it is that the Room 

class defines a default set of room components: four walls, a floor, and a ceiling, 
which normally provide an uninformative default message if you try to examine them. 
So what we should have done, instead of using @insideCave to put our custom floor 
into the cave, was to include it in the list of room parts. While we're at it, we may as 
well replace some of the other default room parts: 

 



118

caveNorthWall : DefaultWall 'north wall' 'north wall' 
 "In the north wall is a narrow gap leading out of the cave. " 
;

caveEastWall : DefaultWall 'east wall' 'east wall' 
 "The east wall of the cave is quite smooth and has the faint remains of 
 something drawn or written on it. Unfortunately it's no longer possible 
 to discern whether it was once a Neolithic cave painting or an example 
 of modern graffiti. " 
;

We then override the roomParts property of insideCave. At the same time, we 
must be careful to remove @insideCave from the definition of caveFloor, otherwise 
we'll effectively be including the floor in the cave twice. While we're at it, we'll also 
tweak insideCave's description so that it includes a description of the floor: 

 
insideCave : Room 'Inside a large cave' 
 "The cave is larger than its narrow entrance might lead one to expect.  
 Even a tall adult could stand here quite comfortable, and the cave  
 stretches back quite some way. <<caveFloor.desc>>" 
 out = outsideCave  
 north asExit(out) 
 roomParts = [caveFloor, defaultCeiling,  caveNorthWall,  
 defaultSouthWall, caveEastWall, defaultWestWall] 
 
;

By the way, note that we made Diggable inherit from Floor rather than, say,  
Fixture; this tells the library that the caveFloor (derived from Floor via Diggable) is 
the room part acting as the floor, so that, for example put torch on ground is 
equivalent to drop torch. If you compile and run the game again you should find it 
works much more satisfactorily, with the added bonus that if you examine the cave 
walls, two of them will be a bit more interesting than the defaults would have been. 

 
4. Calling a Spade a Spade 

Clearly leaving the spade conveniently leaning against the wall of the cave is a 
bit too obvious, even for a simple tutorial game such as this. It obviously needs to 
start life somewhere else, and in fact we've already indicated where that somewhere 
else must be, since we've already described the charcoal burner as wielding a spade. 
To obtain the spade, therefore, Heidi needs to ask Joe for it. 

This may be achieved by first of all adding a suitable AskForTopic to the list of 
TopicEntries in the burnerTalking InConversationState. Here again this is an 
exercise you might like to try for yourself before turning over the page to see how this 
guide does it. An AskForTopic works just like the other types of TopicEntry we've 
seen, except that it responds to ask for whatever instead of, say, ask about 
whatever. You'll need to make sure that your new AskForTopic responds specifically 
to a request for the spade, and that it results not only in Joe saying Heidi can take it, 
but in Heidi actually acquiring it. You'll also need to handle the case where the player 
issues an ask for spade command when Heidi already has the spade. And, of course, 
you'll need to make some appropriate adjustments to the spade object itself, so that it 
starts out being carried by Joe rather than leaning against the wall of the cave. 

 



119

This is how we do it here: 
 
++ AskForTopic @spade 
 topicResponse 
 {

"<q>Could I borrow your spade, please?</q> you ask.<.p> 
 <q>All right then,</q> he agrees a little reluctantly, handing you the  
 spade, <q>but make sure you bring it back.</q>"; 
 spade.moveInto(gActor);       
 }
;

If you compile the game (yet again) and try all this out, you'll find that there's 
still a problem: even after Joe hands the spade over he's described as still leaning on it 
(while he's talking) or still using it (when he goes back to work). But this problem 
turns out to be an opportunity to show how to give Joe a slightly wider range of 
behaviour. The approach we'll take is to give him another pair of ActorStates which 
define what he does when he's without his spade. We'll assume that once he's handed 
over his spade he's particularly anxious to get it back, and won't discuss anything until 
it's been returned. The implementation relies on switching ActorStates as Joe gives 
the spade to Heidi and as Heidi gives it back again. The two new ActorStates may be 
defined as follows: 

 
+ burnerFretting : InConversationState 
 specialDesc = "{The burner/he} is standing talking to you with his 
 hands on his hips. " 
 stateDesc = "He's standing talking to you with his hands on his hips. " 
 nextState = burnerWaiting 
;

++ burnerWaiting : ConversationReadyState 
 specialDesc = "{The burner/he} is walking round the fire, frowning as 
 he keeps instinctively reaching for the spade that isn't there. " 
 stateDesc = "He's walking round the fire. "   
;

+++ HelloTopic 
 "<q>Hello, there.</q> you say.<.p> 
 <q>Hello, young lady - have you brought my spade?</q> he asks. " 
;

+++ ByeTopic 
 "<q>Bye, then.</q> you say.<.p> 
 <q>Don't be too long with that spade - be sure to bring it right  
 back!</q> he admonishes you. " 
;

++ GiveShowTopic @spade 
 topicResponse 
 {

"<q>Here's your spade then,</q> you say, handing it over.<.p> 
 <q>Ah, thanks!</q> he replies taking it with evident relief. "; 
 spade.moveInto(burner); 
 burner.setCurState(burnerTalking); 
 }
;

++ AskForTopic @spade 
 "He doesn't have the spade. " 
 isConversational = nil 
;



120

++ AskTellTopic @spade 
 "<q>This seems a very sturdy spade,</q> you remark.\b 
 <q>It is -- look after it well, I need it for my work!</q> 
 {the burner/he} replies. " 
;

+++ AltTopic 
 "<q>I seem to have left your spade somewhere,</q> you confess.\b 
 <q>I hope you can find it then!</q> {the burner/he} remarks  
 anxiously. " 
 isActive = (!spade.isIn(burner.location)) 
;

++ DefaultAskTellTopic 
 "<q>We can talk about that when I've got my spade back,</q> 
 he tells you. " 
;

There's only a couple of points to note here. The first is that we include an 
AskForTopic to handle the case where the player asks for the spade again when Joe's 
already handed it over; since Joe will always be in the burnerFretting state when he 
doesn't have his spade, we simply include this AskForTopic as one of the TopicEntries 
in that state. In this case, instead of having Joe respond we simply display a message 
indicating that Joe is spadeless (we add an appropriate AskTellTopic and AltTopic to 
handle the case in which Heidi talks about the spade while Joe is in this state). We 
then add isConversational = nil to the definition of the topic to show that this is not 
a conversational interchange, so no greeting protocols will be initiated by the player 
character asking Joe for the spade while he's in this in state. 

The second is that for all this to work as expected it is, of course, necessary to 
relocate the spade from the cave to the burner in your code. 

The third is the explicit definition of nextState = burnerWaiting in the 
burnerFretting state; this is necessary because we change from one 
InConversationState to another in mid-conversation, and without the explicit 
definition of nextState (which defines which ActorState the Actor is to switch to 
when the conversation is terminated from that InConversationState) the program 
becomes a bit confused by the mid-conversation switch of states. For the same reason 
we now need to add nextState = burnerWorking to the definition of burnerTalking.
The other point worth noting is the use of setCurState(state) to change the actor's 
current actor state (don't simply write something like burner.curState = 
burnerTalking;). We need to use the same method in our handling of AskFor to get 
Joe to switch into his burnerFretting state. Add the following line immediately after 
spade.moveInto(gActor); in the topicResponse method of the first AskForTopic 
@spade:

getActor().setCurState(burnerFretting); 
 
Everything should now work fine, but there is one more refinement we can 

add, not because the game really needs it, but because it allows us to try out an aspect 
of TADS 3 NPC programming we haven't seen yet. So far, the player has taken all the 
initiative in starting a conversation; in TADS 3 it's possible to make an NPC initiate a 
conversation. In this game, we'll make Joe so anxious to get his spade back that every 
time Heidi walks into his clearing he'll ask for it (until he gets it back), without 
waiting for her to address him first. We do this using his 
initiateConversation(state, 'name') method, where state is the name of the 



121

ActorState (normally an InConversationState) we want him to switch into, and 
'name' is the name of a Conversation Node we want activated (as the NPC's way of 
initiating the conversation). Within the Conversation Node we define an 
npcGreetingMsg (we could use an npcGreetingList instead) to display what Joe does 
and says to start the conversation. We can also use an npcContinueMsg (or 
npcContinueList) to contain Joe's further prompting if the player fails to respond with 
a conversational command (to create the impression that Joe does really want a reply). 
In this case, we'll have Joe pose a question that requires a simple yes or no answer, 
which we can deal with using a YesTopic and a NoTopic (rather than having to define 
any SpecialTopics or whatever). The new ConvNode and its associated topics then look 
like this: 

 
+ ConvNode 'burner-spade' 
 npcGreetingMsg = "<.p>He looks up at your approach, and walks 
 away from the fire to meet you. <q>Have you finished with my spade 
 yet?</q> he enquires anxiously.<.p>" 
 npcContinueMsg = "<q>What about my spade? Have you finished with it  
 yet?</q> {the burner/he} repeats anxiously. " 
;

++ YesTopic 
 "<q>Yes, I have.</q> you reply.<.p> 
 <q>Can I have it back then, please?</q> he asks. " 
;

++ NoTopic 
 "<q>Not quite; can I borrow it a bit longer?</q> you ask.<.p> 
 <q>Very well, then.</q> he conceded grudgingly, <q>But I need it 
 to get on with my job, so please be quick about it.</q>" 
;

The reason we start the npcGreetingMsg with the pronoun 'he' rather than {The 
burner/he} is that in the only context in which this message will ever be displayed, 
the player will just have read "Joe Black/The charcoal burner is walking round the 
fire, frowning as he keeps instinctively reaching for the spade that isn't there", so the  
burner's name doesn't need repeating immediately afterwards. 

All that remains is to decide where to insert the call to initiateConversation.
At first sight the obvious candidate would be in the afterTravel(traveler, 
connector) method of  burnerWaiting, since this will be called after the Player 
Character travels to Joe's location. This works after a fashion, but unfortunately it 
displays the output in the wrong sequence – we get the npcGreetingMsg displayed 
before the room description, which isn't really what we want. In this instance it works 
better if we instead put the call to initiateConversation in burnerWaiting's 
afterAction method and test for TravelVia as the action type. The additional method 
to be added to burnerWaiting is then: 

 
afterAction() 
 {

if(gActionIs(TravelVia)) 
 getActor().initiateConversation(burnerFretting, 'burner-spade'); 
 }

Note the use of gActionIs(Whatever) to test for the current action, and the use 
of getActor() to get the Actor the current state belongs to. We could just as well have 
used burner.initiateConversation here, but there may be cases where getActor 



122

would be preferable (for example if one were defining a custom TopicEntry class for 
use in a number of different actors). 

At this point it might be worth playing the game through to check that 
everything works properly and the game is still winnable. In the next chapter we'll add 
some more complications. 

 
5. Quick Summary 

This chapter has been mainly concerned with the implementation of further 
obstacles. In the course of this we have seen how to implement a lockable door, a see-
through window, and ground you can dig in. We have expanded the range of ways of  
interacting with NPCs, and have shown how to make the contents of one location 
visible from another. One of the most important new concepts we have encountered is 
the creation of a new verb (command). In brief, the new features we have encountered 
in this chapter are: 

 
New Classes 
Door 
Lockable 
LockableWithKey (can be open with any key listed in its keyList 
 property) 
Key 
 
RoomConnector  (connects rooms defined in its room1 and room2 
 properties) 
DistanceConnector [list of locations connected] 
SenseConnector 
 
MultiLoc (mix-in class; exists in all locations defined in its  
 locationList property) 
Wearable 
 
For Use with NPCs 
AskForTopic 
setCurState(newActorState) 
initiateConversation(state, 'node') 
npcGreetingMsg/ npcGreetingList 
npcContinueMsg/npcContinueList 
YesTopic / NoTopic 
 
Defining New Verbs 
DefineTAction(MyVerb) 
VerbRule(MyVerb) 

Miscellaneous 
askForIobj(Action) 
remoteInitSpecialDesc(actor) 
inRoomName(pov) 
roomParts = [defaultFloor, defaultCeiling, defaultNorthWall etc] 
gActionIs(Whatever) 
isConversational 



123

Chapter Seven -   Pushing the Boat Out 
1. Let there be Light 

This is the last chapter in which we'll try to make things more difficult for 
poor Heidi. The complication we'll add is quite simple: simply change the class of 
insideCave from Room to DarkRoom. As you'll find if you now try to pay the cave a 
visit, Heidi now needs a light source to see what's going on there. The next task, then, 
is to plant a torch (which American readers may call a flashlight) somewhere. We 
can't put it inside the cottage, since that would make the game unwinnable (you need 
to dig up the boots to get to the key to get into the cottage). So instead we'll put the 
torch/flashlight in a garden shed. We'll also be creating a stream, a jetty, and a shop 
that Heidi will eventually need to visit in order to buy some batteries for the 
torch/flashlight. 

Again, before seeing how this guide tackles all this, you might like to have a 
go at adding some of this for yourself. First of all, you need to add four more 
locations to the map: the garden, the inside of the shed, the jetty, and the shop, bearing 
in mind that the player may want to use the commands enter shed and enter shop as 
an alternative to other movement commands: 

 

You'll also need to put a p
shed, perhaps placing the latte
representing the stream at both lo
explaining why Heidi can't simply
the player got the same response
might also want to add some Fa
Heidi can't go west from the Gard

Your biggest challenge, 
Garden to the Jetty, since the map
gets there by rowing a boat down
that Heidi can enter, a means of
back), and a new row verb, whic
the oars before it all works. Mayb
an inside boat room that Heidi ac
from outside, just as you may crea

If you can't manage all thi
you can get, you can read on to se

Stream                                                                Stream

OUT 
Jetty 

Inside 
Shop 

Boat? 
Cottage Inside 
air of oars and a torch (without batteries) inside the 
r in a cupboard. There'll need to be an object 
cations, and a customised response to cross stream 
 cross it at that point. It would be especially neat if 

 from a north command issued by the stream. You 
keConnectors or NoTravelMessages to explain why 
en or either east or west from the Jetty. 
however, will be to get Heidi from the Cottage 
 shows no direct connection. The idea is that Heidi 
 the stream (hence the oars), so you'll need a boat 

 moving it between the Garden and the Jetty (and 
h will require Heidi to be sitting in the boat holding 
e the boat will need more than one object, such as 

tually enters and a boat object to represent the boat 
te a shed object to represent the shed from outside. 
s by yourself, not to worry; once you've got as far as 
e at least one way this can all be implemented. 

IN 
Garden 

Inside 
Cottage 

Outside 
Cottage 

Shed 



124

First, then, we need to create the garden and its shed, using the opportunity to 
introduce a few more TADS 3 features we haven't come across yet: 

 
cottageGarden : OutdoorRoom 'Cottage Garden' 
 "This neat little garden is situated on the north side of the cottage. A 
 stream runs along the bottom of the garden, while a short path disappears 
 through a gap in the fence to the southeast, and another leads westwards  
 down to the road. Next to the fence stands a small garden shed. "   
 southeast = outsideCottage 
 north : NoTravelMessage {"<<gardenStream.cannotCrossMsg>>"} 
 east : NoTravelMessage {"You can't walk through the fence. "} 
 west : FakeConnector {"That path leads down to the road, and you don't  
 fancy going near all those nasty, smelly, noisy cars right now. " } 
 in = insideShed   
;

+ Decoration 'wooden fence' 'wooden fence' 
 "The tall wooden fence runs along the eastern side of the garden, with 
 a small gap at its southern end. " 
;

+ gardenStream: Fixture 'stream' 'stream' 
 "<<cannotCrossMsg>>" 
 dobjFor(Cross) 
 {

verify() {} 
 check() { failCheck(cannotCrossMsg); } 
 }

cannotCrossMsg = ' The stream is quite wide at  
 this point, and too deep to cross. ' 
;

+ Enterable -> insideShed 'garden shed' 'garden shed'   
 "It's a small, wooden shed. "   
 matchNameCommon(origTokens, adjustedTokens) 
 {

if(adjustedTokens.indexOf('shed')) 
 return self; 
 else 
 return cottageGarden; 
 }
;

insideShed : Room 'Inside the Garden Shed' 
 "The inside of the shed is full of garden implements, leaving just about 
 enough room for one person to stand. An old cupboard stands  
 in the corner. " 
 out = cottageGarden 
;

+ Decoration 'garden implements/hoe/rake/shears' 'garden implements' 
 "There's a hoe, a rake, some shears, and several other bits and pieces. " 
 isPlural = true 
;

+ oars : Thing 'pair/oars' 'pair of oars' 
 "The oars look like they're meant for a small rowing-boat. " 
 bulk = 10 
 initSpecialDesc = "A pair of oars leans against the wall. " 
;

To take the simple points first, we add isPlural = true to the definition of the 
Decoration object so that an attempt to take, say, the hoe results in "The garden 



125

implements aren't important" rather than "The garden implements isn't important." 
The other simple point is that the ->insideShed on the Enterable object is a shorthand 
way of specifying its connector property (through use of a template). 

The more complex point involves the garden shed. Since it's called 'garden 
shed', the player could in principle refer to it either as 'shed', 'garden shed' or just 
'garden', and all three forms would match. Yet one may feel that the last of these 
forms shouldn't match. The player character is standing in a garden, so logically the 
command x garden should result in a description of the garden, not the shed. 

The matchNameCommon method is the way we get round this. To quote from the 
comments in the library source code: 

 
'origTokens' is the list of the original input words making up the noun phrase, 
in canonical tokenizer format. Each element of this list is a sublist 
representing one token.  
 
'adjustedTokens' is the "adjusted" token list, which provides more 
information on how the parser is analyzing the phrase but may not contain the 
exact original tokens of the command. In the adjusted list, the tokens are 
represented by pairs of values in the list: the first value of each pair is a string 
giving the adjusted token text, and the second value of the pair is a property 
ID giving the part of speech of the parser's interpretation of the phrase. For 
example, if the noun phrase is "red book", the list might look like ['red', 
&adjective, 'book', &noun].  
 
For our purposes all we need to know is that adjustedTokens will be a list that 

will include all the tokens the player typed, so we can test whether or not 'shed' is 
among them. If not, the player must have typed 'garden' but not 'shed'. Since 
adjustedTokens is a list, we can use its indexOf method to find where in the list the 
string 'shed' is; if 'shed' is in the list then adjustedTokens.indexOf('shed') will return 
a non-zero number which the test (with if) will treat as true; if it isn't then the test will 
fail. If the test succeeds, the tokens include 'shed' and we return self (i.e. the shed) as 
the object matched. Otherwise the player typed 'garden' but not shed, so we return 
cottageGarden as the object matched. Thus, if the player types x garden shed or x
shed the game will describe the shed, but if he or she types x garden it will describe 
the garden.  

We could have implemented some of this functionality by using a weak token 
in the definition of the garden shed; we'd do this by enclosing the word 'garden' in 
parentheses in the list of vocabulary words, i.e.: 

 
+ Enterable -> insideShed '(garden) shed' 'garden shed' 

 
This would prevent the garden shed from responding to commands that just 

use the word 'garden' but would not remap such commands to the garden object. This, 
however, could easily be achieved by adding a vocabWords property to the definition 
of the cottage garden thus:- 

 
vocabWords = '(cottage) garden' 
 
Note that once again we can use the weak token feature, so that the garden can 

be referred to by x garden or x cottage garden but not simply x cottage (you might 
want to add a cottage decoration object to respond to the latter). In practice one would 
probably use the weak tokens method rather than defining a custom matchNameCommon 



126

method to achieve the result desired here, but the detour through matchNameCommon has 
illustrated how to use it. 

There's a couple more things we may want to do with the Enterable 
representing the outside of this garden shed. If the player types open shed or look in 
shed, the standard library responses may be not just unhelpful but potentially 
misleading (perhaps suggesting that the shed is only a decoration object): 

 
>open shed 
That is not something you can open.  
 
>look in shed 
There's nothing unusual in the garden shed. 
 
We can solve the first problem simply by making the shed an Openable as well 

as an Enterable. The second is perhaps most easily solved by having look in shed 
treated as enter shed, on the grounds that someone wanting to find out what's in the 
shed would go inside it. A final problem is that if the player examines the shed it will 
be described as a 'small wooden shed', but that, as things stand, x small wooden shed 
will provoke the response, 'You see no small wooden shed here'; we need to add 
'small' and 'wooden' to the vocabWords of this object. Our revised shed exterior thus 
becomes: 

 
+ Openable, Enterable -> insideShed 'small wooden (garden) shed'  
 'garden shed'    
 "It's a small, wooden shed. "   
 dobjFor(LookIn) asDobjFor(Enter) 
;

You may have noticed that the description of the shed's interior includes 
mention of an old cupboard. What we want to do next is to put a tin on the cupboard 
and a torch inside it. On the face of it we can't do this, since an object can be either a 
container (something you can put things in) or a surface (something you put things 
on) but not both at the same time. We could get round this by laboriously making our 
cupboard out of separate objects, but fortunately the TADS 3 library has already done 
most of this work for us with a class called ComplexContainer. For the details of how 
ComplexContainer works, you can consult the Library Reference Manual and the 
TADS 3 Tour Guide, but there's no need to do so right now; the implementation of our 
cupboard using this class becomes quite straightforward: 

 
+ cupboard: ComplexContainer, Heavy 'battered old wooden cupboard'  
 'old cupboard' 
 "The cupboard is a battered old wooden thing, with chipped blue and 
 white paint. " 
 subContainer : ComplexComponent, OpenableContainer { } 
 subSurface : ComplexComponent, Surface { } 
;

Basically, the ComplexContainer delegates putting-in and putting-on type 
behaviour to the anonymous nested objects defined in its subContainer and 
subSurface properties. These nested objects must be of class ComplexComponent, but 
you can then mix-in whatever classed you want (which, logically, will normally be 
something like Container and Surface respectively). The empty braces {} then 
contain the space where we'd define any properties or methods of these nested 



127

objects; but here we don't need to, since all the relevant behaviour has already been 
defined on their superclasses. 

The next task is to put objects in and on the cupboard: 
 

++ tin : OpenableContainer 'small square tin' 'small tin'    
 "It's a small square tin with a lid. " 
 subLocation = &subSurface 
 bulkCapacity = 5 
;

+++ battery : Thing 'small red battery' 'small red battery' 
 "It's a small red battery, 1.5v, manufactured by ElectroLeax 
 and made in the People's Republic of Erewhon. " 
 bulk = 1 
;

++ torch : Flashlight, OpenableContainer 'small blue torch/flashlight' 
 'small blue torch' 
 "It's just a small blue torch. " 
 subLocation = &subContainer 
 bulkCapacity = 1 
;

The main thing to note here is the special syntax for specifying the initial 
location of objects inside a ComplexContainer. We can still use the + syntax to show 
that an object is on or in (or under or behind) a ComplexContainer, but we need to 
specify which subobject of the ComplexContainer the object is actually located in. To 
do this we use the special subLocation property which can be used only for 
initialization. If we subsquently wanted to move an object into a part of a 
ComplexContainer we'd need to do so with an explicit moveInto, e.g. 
torch.moveInto(cupboard.subContainer).

We make the torch an OpenableContainer so that we can insert the battery. 
The behaviour of the torch requires a little thought. By default an object of the 
Flashlight class will provide light if it's switched on and will stop doing so if it's 
switched off. This is what we want, with the added complication that it should only be 
possible to turn the torch on if the battery is in it.  A further complication is that if the 
player insists on removing the battery while the torch is on, it should at once go out 
again. Here's the definition of the torch with all that extra handling added: 

 
++ torch : Flashlight, OpenableContainer 'small blue torch/flashlight' 
'small blue torch' 
 "It's just a small blue torch. " 
 subLocation = &subContainer 
 bulkCapacity = 1   
 dobjFor(TurnOn) 
 {

check() 
 {

if(! battery.isIn(self)) 
 {

"Nothing happens. "; 
 exit; 
 }

}
}
iobjFor(PutIn) 

 {
check() 

 {
if(gDobj != battery) 



128

{
"{The dobj/he} doesn't fit in the torch. "; 

 exit; 
 }

}
action() 

 {
inherited; 

 makeOpen(nil); 
 achieve.addToScoreOnce(1); 
 }

}
notifyRemove(obj) 

 {
if(isOn) 

 {
"Removing the battery causes the torch to go out. "; 

 makeOn(nil);         
 }

}
achieve: Achievement 

 { desc = "fitting the battery into the torch"  } 
;

There's nothing very difficult here, but note that we take the opportunity to 
make sure that the battery is the only object that can be put in the torch;36 we 
automatically close the torch after the battery is inserted to avoid getting the battery 
mentioned in response to an inventory command when we're carrying the torch. The 
most important thing to note is the use of the notifyRemove method to handle the 
battery being removed from the torch; we use this since we can't be sure which 
command a player might use to do this, e.g. take battery or remove battery from 
torch. The other thing we do is to award a point for inserting the battery  into the 
torch for the first time only. To do this we define an Achievement object nested on the 
(custom) achieve property, and call its addToScoreOnce(points) method in our 
iObjFor(PutIn) action method. We do it this way since there is no freestanding 
AddToScoreOnce function we can call, and we need the Achievement object so that it 
can keep track of whether its been used to award points before. 

At this point, we need to adjust the original location, first to indicate that 
there's a path round to the side of the cottage, and second to provide the relevant 
connection: 

 
outsideCottage : OutdoorRoom 'In front of a cottage'    
 "You stand just outside a cottage; the forest stretches east. 
 A short path leads round the cottage to the northwest. " //add this 

east = forest 
 in = cottageDoor 
 west asExit(in) 
 northwest = cottageGarden // add this 
;

Once again, you can now recompile the program and test it all out to check 
that it still works. 

 

36 In a simpler case this could have been achieved using the RestrictedContainer class and setting its 
validContents property equal to [battery]; this would enable us to remove the check() routine, but 
would require us to add both Openable and RestrictedContainer to the class list of the torch. 



129

2. Row My Boat 

Leaving the battery so near the torch perhaps makes things a little too easy. 
For the final complication we'll oblige Heidi to go and buy a battery, and just to make 
things interesting the way to the shop will be by rowing a boat along the stream (now 
you know what the oars are for). Since we're going to row this boat, we once again 
need to define a new verb: 

 
DefineTAction(Row); 
 
VerbRule(Row) 
 'row' singleDobj 
 : RowAction 
 verbPhrase = 'row/rowing (what)' 
;

modify Thing 
 dobjFor(Row)  
 {

preCond = [touchObj] 
 verify() { illogical('{You/he} can\'t row {that dobj/him}'); } 
 }
;

There is a Vehicle class (a subclass of NestedRoom), but this is not really what 
we want for our boat. Instead we'll use three different objects to define our boat; a 
Heavy, Enterable to represent the boat as seen from the outside, an OutdoorRoom to 
represent its interior, and an anonymous object placed inside the OutdoorRoom to be 
the object of the Row action. This is how we fit the three together: 

 
boat : Heavy, Enterable -> insideBoat 'rowing boat' 'rowing boat' 
 @cottageGarden 
 "It's a small rowing boat. " 
 specialDesc = "A small rowing boat floats on the stream,  
 just by the bank. " 
 useSpecialDesc { return true; } 
 dobjFor(Board) asDobjFor(Enter)   
;

insideBoat : OutdoorRoom 
 name = ('In the boat (by '+ boat.location.name + ')') 
 desc = "The boat is a plain wooden rowing dinghy with a single  
 wooden seat. It is floating on the stream just by the  
 <<boat.location.name>>. "   
 out = (boat.location) 
;

+ Fixture 'plain wooden rowing boat/dinghy' 'boat' 
 "<<insideBoat.desc>>" 
 dobjFor(Take) 
 {

verify() {illogical('{You/he} can\'t take the boat - {you\'re/he\'s} in 
 it!'); } 
 }

dobjFor(Row) 
 {

verify() {} 
 check() 
 {

if(!oars.isHeldBy(gActor)) 
 {



130

"{You/he} need to be holding the oars before you can row this boat. "; 
 exit; 
 }

}
action() 

 {
"You row the boat along the stream and under a low bridge, finally  

 arriving at "; 
 if(boat.isIn(jetty)) 
 {

"the bottom of the cottage garden.<.p> "; 
 boat.moveInto(cottageGarden);         
 }

else 
 {

"the side of a small wooden jetty.<.p> "; 
 boat.moveInto(jetty); 
 }

nestedAction(Look); 
 }

}
;

There is little here that is really new; we have simply fitted existing things 
together in a new way. Perhaps the most complex of these is the way we have defined 
the name property of insideBoat. We have taken advantage of the fact that a property 
can contain an expression (in parentheses) to build up a name that shows not only that 
the player character is the boat but where the boat is. We also use 
<<boat.location.name>> in the description of the boat's interior, so that this also 
reports not only what the boat looks like but where it is. Finally, we set the out 
property of insideBoat to boat.location, so that whenever we go out from 
insideBoat we end up wherever the boat object is. We can thus achieve the actual 
travel by moving the boat object around. Finally, we use the specialDesc property of 
the boat object to display a message that the boat is floating on the stream, and define 
the useSpecialDesc method always to return true so that specialDesc is always used. 

The code for handling the Row command first checks that the actor is holding 
the oars. If so, then it checks which of two locations the boat is currently in and 
moves it to the other, displaying a suitable message to show the outcome, and then 
performing a nested Look action to show that we've arrived at a new location. 

One could almost do away with the anonymous object contained within 
insideBoat, by defining vocabWords = 'boat' on insideBoat itself and moving the 
handling of for Row and Take to insideBoat. The main reason for not doing this is 
that one gets quite a bizarre message if one types the command row without a direct 
object and the parser helpfully selects the insideBoat object. 

There's one other minor refinement you may want to include on this boat. If 
you get in the boat and then sit or lie down, you'll find that you're described as being 
in the boat sitting or lying on the ground. The way to fix this is to give the boat a more 
appropriate floor object: 

 
boatBottom : Floor 'floor/bottom/(boat)' 'bottom of the boat' 
;

insideBoat : OutdoorRoom 
 name = ('In the boat (by '+ boat.location.name + ')') 
 desc = "The boat is a plain wooden rowing boat with a single wooden seat. 
 It is floating on the stream just by the <<boat.location.name>>. "   
 out = (boat.location) 
 roomParts = [boatBottom, defaultSky]  
;



131

You may also want to add the small wooden seat referred to in the description 
of the inside of the boat, but this can be left as an exercise for the reader (or you can 
look at the source code to heidi.t that came with this Guide). Note that the way we 
have specified boatBottom's vocabWords (floor/bottom/(boat)) will automatically 
match 'floor of boat' and 'bottom of boat' – but not just 'boat'); once again we don't 
need to do anything special to take care of the 'of' in phrases like these. 

This boat is fairly simple since it moves between only two locations. If we 
wanted more possible locations we'd need a more complicated implementation of the 
Row verb – or perhaps define two versions of it, RowUpstream and RowDownstream. 
In principle, however, the approach taken here could be extended to all sorts of 
vehicles. 

Talking of destinations, we have yet to define the destination the boat arrives 
at when it's rowed from the bottom of the garden (although you may already have 
made your own attempt). Here's this guide's suggestion: 

 
jetty : OutdoorRoom 'Jetty' 
 "This small wooden jetty stands on the bank of the stream. Upstream  
 to the east you can see a road-bridge, and a path runs downstream  
 along the bank to the west. Just to the south stands a small shop. " 
 west : FakeConnector {"You could go wandering down the path but you don't 
 feel you have much reason to. "} 
 east : NoTravelMessage {"The path doesn't run under the bridge. "} 
;

+ Distant 'bridge' 'bridge' 
 "It's a small brick-built hump-backed bridge carrying the road over 
 the stream. " 
;

+ Fixture 'stream' 'stream' 
 "The stream becomes quite wide at this point, almost reaching the  
 proportions of a small river. To the east it flows under a bridge, and  
 to the west it carries on through the village. " 
 dobjFor(Cross) 
 {

preCond = [objVisible] 
 verify() {} 
 check()  
 { failCheck ('The stream is far too wide and deep to cross here. '; } 
 }
;

The one new feature introduced here is the Distant class, which may be used 
for objects that can be seen from a location but are too far away to interact with. This 
location isn't quite finished, since there's still no shop. We'll add that in the next 
section; in the meantime you can try the current version of the game out to make sure 
you can row your boat. 

3. Going Shopping 

The next task is to add the shop. The definition can go straight after the code 
listed above (so that the shop exterior is placed in the jetty room). If you haven't 
already tried defining your own shop interior, you could do so now, remembering to 
add a counter and maybe some items for sale (which could just be Decoration objects 
for now). You could also try adding a bell on the shop's counter, which Heidi can ring 
for service. 



132

Here's our version 
 

+ Enterable -> insideShop 'small shop/store' 'shop' 
 "The small, timber-clad shop has an open door, above which is a sign  
 reading GENERAL STORE" 
;

insideShop : Room 'Inside Shop' 
 "The interior of the shop is lined with shelves containing all sorts of  
 items, including basic foodstuffs, sweets, snacks, stationery, batteries, 
 soft drinks and tissues. Behind the counter is a door marked 'PRIVATE'. " 
 out = jetty 
 north asExit(out) 
 south : OneWayRoomConnector 
 {

destination = backRoom 
 canTravelerPass(traveler) { return traveler != gPlayerChar; } 
 explainTravelBarrier(traveler)  
 { "The counter bars your way to the door. "; }     
 }
;

+ Decoration 'private door*doors' 'door' 
 "The door marked 'PRIVATE' is on the far side of the counter, and there  
 seems to be no way you can reach it. The other door out to the jetty is to  
 the north. " 
;

+ Fixture, Surface 'counter' 'counter' 
 "The counter is about four feet long and eighteen inches wide. " 
;

++ bell : Thing 'small brass bell' 'small brass bell' 
 "The bell comprises an inverted hemisphere with a small brass knob  
 protruding through the top. Attached to the bell is a small sign. " 
 dobjFor(Ring) 
 {

verify() {} 
 check() {} 
 action() {"TING!";} 
 }
;

+++ Component, Readable 'sign' 'sign' 
 "The sign reads RING BELL FOR SERVICE. " 
;

+++ Component 'knob/button' 'knob' 
 "The knob protrudes through the top of the brass hemisphere of the bell. " 
 dobjFor(Push) remapTo(Ring, bell) 
;

backRoom: Room  
 north = insideShop 
;

Only a few things need any explanation here. The definition of backRoom is 
minimal because the Player Character will never visit it – the location exists solely as 
somewhere for the shopkeeper to be when she's not in the shop. We thus define the 
OneWayRoomConnector south from the shop interior so that the Player Character can't 
pass but the shopkeeper can. Although two doors are mentioned (or at least implied) 
by the room description, we supply a Decoration object to represent them; a fuller 
implementation isn't necessary. The essential items are the counter and the bell on the 
counter that the customer must ring to attract attention. This introduces a new class, 



133

the Component class, which, as its name suggests, treats objects of that class as 
components of the object that contains them. The sign is also of class Readable, which 
makes it a more likely target for a read command; it would also allow read sign to 
produce a different description if we had overridden the readDesc property on the 
object, but that would be rather fussy here. We allow the player to ring the bell either 
with ring bell or push knob, the latter command remapping to the former. Since ring 
is not a verb defined in the library, we need to define it, which we can do by copying 
the definition of Row and making the few necessary changes: 

 
DefineTAction(Ring); 
 
VerbRule(Ring) 
 'ring' singleDobj 
 : RingAction 
 verbPhrase = 'ring/ring (what)' 
;

modify Thing 
 dobjFor(Ring)  
 {

preCond = [touchObj] 
 verify() { illogical('{You/he} can\'t ring {that dobj/him}'); } 
 }
;

If we were designing this game for real, we'd probably want to populate the 
shop with a few more decoration objects, e.g. for the shelves, the items on the shelves, 
and a cash register on the counter; we'll be adding some of these later, the rest can be 
left, yet again, as an exercise for the reader. Right now we need to attend to what 
happens when the bell is rung; obviously more than just displaying the string 'TING' 
is required; we need to summon the shopkeeper. 

There are several ways this could be done; the way we shall use here probably 
isn't the simplest or the most elegant, it's simply one that lets us try out some features 
of the library we haven't met yet. In brief, we'll cause the ringing of the bell to trigger 
a SoundEvent. We'll then add a SenseConnector between the inside of the shop and the 
back room so that the SoundEvent can be detected by the shopkeeper even when she's 
in the back room, but we also need to make the shopkeeper a SoundObserver so she'll 
be receptive to the sound. We'll then have the sound trigger a daemon on the 
shopkeeper to make her walk into the shop one turn later (a fuse would have done just 
as well, so it doesn't much matter which we use here.) 

This probably sounds rather complicated, if not downright incomprehensible, 
so let's take it one step at a time. First, we need to define the SoundEvent:
bellRing : SoundEvent 
 triggerEvent(source) 
 {

"TING!<.p>"; 
 inherited(source); 
 }
;

We have made the SoundEvent responsible for producing the "TING!" so 
we've had to override its triggerEvent(source) method, otherwise the definition of 
bellRing would have been even simpler. The call to inherited(source) within 
triggerEvent(source) is absolutely vital here, since it's the inherited method (i.e. the 
behaviour defined on the class) that does all the work of notifying interested parties 



134

that the sound event has just happened. The source parameter is the object from which 
the sound is supposed to emanate. This is the bell, whose dobjFor(Ring) now needs to 
its action method redefined thus: 

 
action()       {      bellRing.triggerEvent(self);     } 
 
Where self, of course, refers to the bell object. The next task is to make sure 

that the bell ring can be heard in the back room as well as the shop. To do that we 
need to define a SenseConnector between the two: 

 
SenseConnector, Intangible 'wall' 'wall' 
 connectorMaterial = paper 
 locationList = [backRoom, insideShop] 
;

If everything works as it should, giving the SenseConnector the name 'wall' 
should be unnecessary, but if something works unexpectedly and the parser wants to 
refer to this object, it's as well that it should have a recognizable name so we can see 
what's happening. Since the sound does notionally travel through the wall, that's a 
sensible name to give it. On the other hand, the player does not need to interact with 
this object in any way, so we make it of class Intangible (as well as 
SenseConnector), so that it does not have any physical presence. The 
connectorMaterial defines the senses this SenseConnector will pass: paper is 
predefined to be transparent to sound and smell but opaque to sight and touch; in this 
case we don't care one way or the other about smell, and since it does what we want 
with the other three senses, this will do fine. 

Now all we have to do is to define the shopkeeper. At this point we shan't 
program all her behaviour, just what's needed to get her to respond to the bell ring: 

 
shopkeeper : SoundObserver, Person 'young shopkeeper/woman' 'young 
shopkeeper' 
 @backRoom 
"The shopkeeper is a jolly woman with rosy cheeks and fluffy blonde curls. " 
 isHer = true 
 properName = 'Sally' 
 notifySoundEvent(event, source, info) 
 {

if(event == bellRing && daemonID == nil && isIn(backRoom)) 
daemonID = new Daemon(self, &daemon, 2);  

 else if(isIn(insideShop) && event==bellRing) 
 "<q>All right, all right, here I am!</q> says {the  
 shopkeeper/she}.<.p>"; 
 }

daemonID = nil 
 daemon 
 {

moveIntoForTravel(insideShop); 
 "{The shopkeeper/she} comes through the door and stands behind the  
 counter. "; 
 daemonID.removeEvent(); 
 daemonID = nil;    
 }

globalParamName = 'shopkeeper' 
;

The first new feature to note here is the addition of SoundObserver to the 
shopkeeper's class list. This allows us to define the notifySoundEvent method, which 



135

will be triggered by the bell ring.37 Since the bell ring is the only soundEvent in the 
game we hardly need to test for it, but to be on the safe side we do so anyway (if 
event == bellRing). At the same time we check that the shopkeeper is still in the 
back room and that the daemon is not yet operative. We also check to see if the bell is 
rung while she's in the shop so she can simply respond with a suitable remark. 

The complicated part is setting up the daemon. A new daemon is created with 
a call to new Daemon(obj, prop, interval), where obj is the object it refers to, prop is 
the method on that object that is called each time the daemon is invoked, and interval 
is the number of turns between each invocation of the daemon. Here we define the 
daemon to run the daemon method (note that the parameter is supplied as &daemon) on 
self (the shopkeeper) every second turn (this means she won't come into the shop until 
the turn after the bell is rung). Since we want to be able to stop the daemon again we 
need to store a reference to the daemon, which we do in the property daemonID (note 
that we could have called the daemon method and the reference property anything we 
liked). 

The daemon method first moves the shopkeeper into the shop and displays a 
suitable message to announce her arrival. We use moveIntoForTravel rather than 
moveInto to move the shopkeeper since with the latter the library code tries to find a 
path to move her through, and may well end up moving her through the 
SenseConnector with dire consequences (i.e. a runtime error); moveIntoForTravel 
avoids this problem. Once the shopkeeper has moved the daemon has done its work, 
so we get it to tidy up after itself, first by calling daemonID.removeEvent(), and finally 
by resetting daemonID back to nil so we can easily test for there no longer being an 
active daemon. 

In this particular case we could have achieved the same effect slightly easier 
by using a fuse rather than a daemon. Instead of 

 
daemonID = new Daemon(self, &daemon, 2); 
 
We could have written 
 
daemonID = new Fuse(self, &daemon, 1); 
 
(Note the change in the number from 2 to 1 to produce the same effect of the 

shopkeeper moving on the next turn). The use of the fuse would have avoided the 
need for the line: 

 
daemonID.removeEvent(); 
 
We should still need to keep track of whether we had an active fuse (using 

daemonID, which we might rename fuseID had we used a fuse) in order to make sure 
that a second ringing of the bell while the fuse was still active did not cause the 
creation of a second fuse. 

Having reached this point, we can start expanding the definition of the 
shopkeeper using ActorStates and TopicEntries as with Joe the Charcoal Burner; you 
might like to try this out for yourself before reading this guide's version over the page. 

 
37 Actually, it would have worked just as well to define notifySoundEvent on the shopkeeper without 
bothering with the SoundObserver mix-in class, but it's as well to use SoundObserver for the sake of 
future compatibility; in some future version of the library this class may do more. 



136

+ sallyTalking : InConversationState 
 specialDesc = "{The shopkeeper/she} is standing behind the counter  
 talking with you. " 
 stateDesc = "She's standing behind the counter talking with you. " 
 nextState = sallyWaiting 
;

++ sallyWaiting : ConversationReadyState 
 specialDesc = "{The shopkeeper/she} is standing behind the counter, 
 checking the stock on the shelves. " 
 stateDesc = "She's checking the stock on the shelves behind the counter. " 
 isInitState = true   
 takeTurn 
 {

if(!gPlayerChar.isIn(insideShop) && shopkeeper.isIn(insideShop))  
 shopkeeper.moveIntoForTravel(backRoom); 
 inherited;   
 }
;

+++ HelloTopic 
 "<q>Hello, <<getActor.isProperName ? properName : 'Mrs Shopkeeper'>>,</q> 
 you say.<.p> 
 <q>Hello, <<getActor.isProperName ? 'Heidi' : 'young lady'>>, what can 
 I do for you?</q> asks {the shopkeeper/she}." 
;

+++ ByeTopic 
 "<q>'Bye, then!</q> you say.<.p> 
 <q>Goodbye<<getActor.isProperName ? ', Heidi' : nil>>.  
 See you again soon!</q> {the shopkeeper/she} beams in return. " 
;

+++ ImpByeTopic 
 "{The shopkeeper/she} turns away and starts checking the stock on the  
 shelves.<.p>" 
;

There is scarcely anything new here. Note the use of the double angle-bracket 
construction in the HelloTopic and ByeTopic to vary what's said according to whether 
Sally and Heidi have exchanged names yet, and the separate ImpByeTopic to decide 
what should be displayed when the conversation is ended; if the conversation ends 
because Heidi stops conversing or walks out of the shop, Sally simply goes back to 
work. Heidi will be considered to have stopped talking if she fails to address a 
conversational command to Sally for the number of turns in the attentionSpan of 
Sally's current InCoversationState. By default this is four; it can be made effectively 
infinite by setting attentionSpan to nil.

The takeTurn() method is called once every turn that this is Sally's current 
ActorState. Here we use it to check whether Heidi is still inside the shop; if she isn't, 
and Sally still is, then we send Sally back to her back room. It may occur to you that 
the takeTurn method is effectively a kind of daemon; to produce the effect of Sally 
coming into the shop the turn after the bell is rung, we could simply have added a few 
extra lines of code to this takeTurn method, perhaps in conjunction with a custom 
property. We could have dispensed with the whole mechanism of SoundEvent and 
SenseConnector, and simply have added a line of code in the dobjFor(Ring) method of 
the bell to change the value of the custom property which the additional code in the 
takeTurn() method could test for. But then we'd have lost the opportunity to look at 
sensory events, sense connectors, fuses and daemons. If you want to try to do it the 
simpler way, by all means experiment. 



137

Since the shopkeeper has been summoned by the ringing of the bell, she is 
likely to initiate the conversation rather than waiting to be addressed by her customer. 
To handle this, add the following line after daemonID = nil; at the end of the 
shopkeeper's daemon method: 

 
initiateConversation(sallyTalking, 'sally-1'); 
 
And then add the definition of the appropriate conversation node; a good place 

for it would be between the definition of the shopkeeper and the definition of 
sallyTalking:
+ ConvNode 'sally-1' 
 npcGreetingMsg = "<q>Right, what can I get you?</q> she asks. <.p>" 
;

We don't need to put any topics under this conversation node; its only function 
is to display the npcGreetingMsg.38 Any topics can then be handled by the 
sallyTalking:InConversationState. Let's start by adding a few now (put them after 
the definition of sallyWaiting): 

 
++ AskTellTopic [shopkeeper, gPlayerChar] 
 "<q>I'm Heidi. What's your name?</q> you ask.<.p> 
 <q>Hello, Heidi; I'm <<shopkeeper.properName>>,</q> she smiles. 
 <<shopkeeper.makeProper>>" 
;

+++ AltTopic 
 "<q>I'm feeling really <i>very</i> well today; how are you?</q> you  
 ask.<.p> 
 <q>I'm feeling very well too, thanks.</q> she tells you. " 
 isActive = (shopkeeper.isProperName) 
;

++ AskTellTopic @burner 
 "<q>Do you know {the burner/him}, the old fellow who works in the  
 forest?</q> you enquire innocently.<.p> 
 <q>He's not <i>that</i> old,</q> she replies coyly. " 
;

++ AskTellTopic @tWeather 
 "<q>Lovely weather we're having, don't you think?</q> you remark.<.p> 
 <q>Absolutely,</q> she agrees, <q>and with luck, it should stay fine  
 tomorrow.</q>" 
;

++ DefaultAskTellTopic, ShuffledEventList 
 [

'<q>What do you think about ' + gTopicText + '?</q> you ask.<.p> 
 <q>Frankly, not a lot.</q> she replies. ', 
 '<q>I think it\'s really interesting that...</q> you begin.<.p> 
 <q>Oh yes, really interesting.</q> she agrees. ', 
 'You make polite conversation about ' + gTopicText + ' and 
 {the shopkeeper/she} makes polite conversation in return. ' 
 ]
;

38 Which means we didn't really need to use initiateConversation here; the simpler alternative (simply 
displaying a message and changing Sally's ActorState) is left as an exercise for the reader. 



138

Most of this should be fairly familiar. Note that placing a list in square 
brackets, as in the [shopkeeper, gPlayerChar] in the first AskTellTopic means that 
the topic can be triggered by any of the objects in the list; so this topic will work 
equally well for ask shopkeeper about herself or tell shopkeeper about yourself.
Note also the use of string concatenation (joining strings together with the + operator) 
in the DefaultAskTellTopic to allow the use of a variable element (gTopicText) in an 
EventList. The other slight novelty (unless you already experimented with it at the 
end of the previous chapter) is the use of a Topic object to talk about the weather; 
since the weather is not a physical object defined anywhere in the game, we don't 
have a game object to match it to. To cope with this type of situation, where you want 
to be able to converse about things that are not game objects, there is a special Topic 
class. In this case all we need define is: 

 
tWeather : Topic 'weather'; 

 
There's nothing magic about the 't' with which I started the object name here; 

that's just a convention I use to mark it as a Topic object as opposed to an ordinary 
game object. Note that, unlike game objects, Topic objects are assumed to be known 
by default, so that they are always available to ask about and tell about commands.39 
This can be changed by setting defining the isKnown property of the topic to nil when 
it is defined, e.g. if a player is to be informed about a gruesome murder during a 
conversation, but does not know of it when the game begins, one might define the 
murder topic object thus: 

 
tMurder : Topic 'gruesome murder' 
 isKnown = nil 
;

When the player then learns of the murder at a later point one could use the 
gSetKnown(tMurder) macro to set tMurder.isKnown = true.

4. Handling Cash Transactions 

a. Providing Goods and Money 

Although we have created a shop and a shopkeeper, we have yet to program 
the actual purchase process. This will turn out to be one of the most complex tasks we 
have attempted so far; money is a surprisingly difficult thing to handle in IF. We shall 
first try an approach with a couple of buyable items and four coins. We shall then 
discuss how this might be expanded and simplified to cope with more general cases, 
without trying to add a more general case to our game. 

What Heidi needs to buy from the shop is a battery. To make things a bit more 
interesting we'll assume she can also buy a bag of sweets (that's 'candy' for all you 
folks on the western side of the Atlantic). The first thing to do, then, is to remove the 
 
39 On the other hand the player can’t ask or tell about something the player character doesn’t know 
about, so that, for example, if you try to get Heidi to ask the shopkeeper about the charcoal burner 
before Heidi has come across it, you’ll get the DefaultAskTellTopic rather than the specific burner 
AskTellTopic. 



139

battery from the tin (where we last left it) and to create a sweets/candy object. 
Remove the + sign from in front of the battery, move it after the contents of 
insideShop, and then define the bag of sweets: 

 
battery : Thing 'small red battery' 'small red battery' 
 "It's a small red battery, 1.5v, manufactured by ElectroLeax 
 and made in the People's Republic of Erewhon. " 
 bulk = 1 
;

sweetBag : Dispenser 'bag of candy/sweets' 'bag of sweets' 
 "A bag of sweets. " 
 canReturnItem = true 
 myItemClass = Sweet 
;

We define the bag of sweets as a Dispenser since we expect it to contain 
individual items (i.e. sweets) which can be taken from the bag (and returned to it, 
since we have defined canReturnItem = true). We set myItemClass = Sweet to define 
the type of object we expect the bag to hold. We must next define the Sweet class; the 
following code is more or less lifted straight from the TADS 3 sample game 
(sample.t) changing 'coin' to 'sweet' throughout and adding a few more customisations 
relevant to sweets, most notably making Sweet inherit from Food as well as 
Dispensable. While we're at it we'll adapt code from the sample game to make the 
sweets list neatly (e.g. "there are 9 sweets (3 red, 3 yellow and 3 green)" rather than 
"there is a red sweet, a red sweet, a red sweet, a yellow sweet etc.").  For this we need 
a ListGroupParen and an ItemizingCollectiveGroup along with definitions of a Sweet 
class and subclasses to define collections of basically similar objects. Since this is 
something of a decorative distraction from our main objective here (Heidi doesn't 
need the sweets for the player to win the game), I shall simply present the adaptation 
from the sample.t code as an example, without pausing to discuss it in any depth; if 
you like, you can just skip it all for now. 
class Sweet : Dispensable, Food  
 desc = "It's a small, round, clear, <<sweetGroupBaseName>> boiled sweet. " 
 vocabWords = 'sweet/candy*sweets' 
 location = sweetBag 
 listWith = [sweetGroup] 
 sweetGroupBaseName = '' 
 collectiveGroups = [sweetCollective] 
 sweetGroupName = ('one ' + sweetGroupBaseName) 
 countedSweetGroupName(cnt) 
 { return spellIntBelow(cnt, 100) + ' ' + sweetGroupBaseName; } 
 tasteDesc = "It tastes sweet and tangy. " 
 dobjFor(Eat) 
 {

action() 
 {

"You pop <<theName>> into your mouth and suck it. It tastes nice 
 but it doesn't last as long as you'd like.<.p>"; 
 inherited; 
 }

}
;

class RedSweet : Sweet 'red - ' 'red sweet'  
 isEquivalent = true  
 sweetGroupBaseName = 'red' 
;



140

class GreenSweet : Sweet 'green - ' 'green sweet'  
 isEquivalent = true  
 sweetGroupBaseName = 'green' 
;

class YellowSweet : Sweet 'yellow - ' 'yellow sweet' 
 isEquivalent = true  
 sweetGroupBaseName = 'yellow' 
;

sweetGroup: ListGroupParen 
 showGroupCountName(lst) 
 {

"<<spellIntBelowExt(lst.length(), 100, 0, 
 DigitFormatGroupSep)>> sweets"; 
 }

showGroupItem(lister, obj, options, pov, info) 
 { say(obj.sweetGroupName); } 
 showGroupItemCounted(lister, lst, options, pov, infoTab) 
 { say(lst[1].countedSweetGroupName(lst.length())); } 
;

sweetCollective: ItemizingCollectiveGroup 'candy*sweets' 'sweets' 
;

Finally, we put some sweets in the bag simply by defining a number of 
anonymous objects of the appropriate type; note that the class definitions already 
locate the sweets in the bag so the code required to create the sweets is minimal: 

 
RedSweet; 
RedSweet; 
RedSweet; 
RedSweet; 
GreenSweet; 
GreenSweet; 
GreenSweet; 
YellowSweet; 
YellowSweet; 

 
Rather than getting bogged down in a description of how all this works (for 

which see the comments in sample.t), we'll regard it for now as simply an exercise in 
copying and adapting boilerplate code and get on with the business of setting up shop 
(indeed, for the main purpose of the exercise you could simply skip all the above and 
leave the bag of sweets as a Thing object, since Heidi's ability to eat, examine and 
taste the sweets plays no essential role in the game). 

The two objects so far created, battery and sweetBag, are the two objects that 
will be handed to Heidi when as she completes her purchases. With only four pounds 
at her disposal, however, she is not going to buy up the shop's complete stock of these 
items. In other words, there should be sweets and batteries on display before and after 
the sale. On the other hand, it would be good if Heidi could not simply reach out and 
take them; placing them on shelves out of reach behind the counter and defining them 
to be of class Distant would achieve this object. But once they're in sight, they'll be 
the obvious objects for the parser to select in response to a command referring to 
batteries or sweets – including any command we use to indicate what Heidi is 
interested in buying. It would therefore be useful to define some custom properties on 
these items that can be used when we come to code the transactions. Add the 
following code so that the shelves are contained directly in the shop (e.g. by placing 
them directly after the definition of +++ Component 'knob/button' 'knob'): 

 



141

+ Distant, Surface 'shelf*shelves' 'shelves' 
 "The shelves with the most interesting goodies are behind the counter. " 
 isPlural = true   
;

++ batteries : Distant 'battery*batteries' 'batteries on shelf' 
 "A variety of batteries sits on the shelf behind the counter. " 
 isPlural = true   
 salePrice = 3 
 saleName = 'torch battery' 
 saleItem = battery     
;

++ sweets : Distant 'candy/sweets' 'sweets on shelf' 
 "All sorts of tempting jars, bags, packets and boxes of sweets lurk  
 temptingly on the shelves behind the counter. " 
 isPlural = true    
 salePrice = 1 
 saleName = 'bag of sweets' 
 saleItem = sweetBag 
;

The salePrice property should be fairly self explanatory; saleItem contains 
the object that will actually be handed over to Heidi, while saleName is a name that 
will be used to describe this object in the course of the transaction. Finally, we need to 
put some money where Heidi will find it. Since we've taken the battery out of the tin 
and left it empty, let's put the cash in the tin: 

 
++ tin : OpenableContainer 'small tin' 'small tin'    
 "It's a small square tin with a lid. " 
 subLocation = &subSurface 
 bulkCapacity = 5 
;

class Coin : Thing 'pound coin/pound*coins*pounds' 'pound coin' 
 "It's gold in colour, has the Queen's head on one side and <q>One  
 Pound</q> written on the reverse. The edge is inscribed with the words  
 <q>DECUS ET TUTAMEN</q>" 
 isEquivalent = true 
;

+++  Coin; 
+++  Coin; 
+++  Coin; 
+++  Coin; 

 
Note that we can create the Coin class between the tin and the Coin objects 

and still use the + notation without any difficulty (the tin object was defined 
previously and is repeated here only for the sake of convenience). By the way if 
pound coins seem just too British to you, feel free to change them to dollar bills, euro 
notes or anything else; the principles will remain the same (though you'll need to be 
sure you make your changes consistently throughout what follows). 
b. Making the Sale 

What we now want to achieve is for Heidi to be able to ask for an item, be told 
the price, and receive the item she's asked for once she's handed over the correct 
money. We shall assume that once she's suggested one transaction, she can't start a 
second until she's completed the first. We shall also prevent her buying more than one 
of each item (she doesn't have enough money to buy a second battery, if she buys two 



142

bags of sweets she'll have insufficient funds left to buy the battery and the game will 
become unwinable, and in any case we only have one of each type of object to give 
her). Although we could create a separate transaction object to keep track of all this, 
we might as well use the shopkeeper object. 

To make things a bit easier, we'll treat an ask for command directed to the 
shopkeeper as equivalent to ask about (on the assumption that if Heidi asks about a 
battery she wants to know about buying it, which comes to much the same thing as 
asking for it). We'll do this when we come to it by using the combined 
AskAboutForTopic. The next thing we have to reckon with is that if Heidi hands over 
more than one coin at a time (e.g. because the player types give shopkeeper three 
pounds), although this will count as one player turn, it will be treated as three 
iterations of the code handling the giving of a single coin to the shopkeeper. The 
problem here is that in this situation we don't want the shopkeeper to respond as each 
coin is handed over, but only after the complete number of coins specified in the 
player's command have been handed over. One way to handle this is via a fuse: the 
handing over of the first coin creates a new fuse; the handing over of subsequent coins 
merely keeps track of how many coins have been handed over. Once the specified 
number of coins has been handed over the player's turn is complete, and the fuse will 
fire – the code in the method called by the fuse can then handle the shopkeeper's 
response to the aggregate number of coins handed over (which might be too few, too 
many, or just right for the item asked for).  

The code for starting the fuse will need to be on the GiveTopic that handles the 
giving of coins, but we'll code the method the fuse calls on the shopkeeper. We also 
need to add several custom properties to the shopkeeper object to keep track of the 
transaction. The code to be added to the shopkeeper is the following: 

 
shopkeeper : Person, SoundObserver 'young shopkeeper/woman' 'young 
shopkeeper' 
…
cashReceived = 0 
 price = 0 
 saleObject = nil 
 cashFuseID = nil 
 cashFuse 
 { 
 if(saleObject == nil) 
 {

"<q>What's this for?</q> asks {the shopkeeper/she}, handing the 
 money back, <q>Shouldn't you tell me what you want to buy  
 first?</q>"; 
 cashReceived = 0;  
 }

else if(cashReceived < price) 
 "<q>Er, that's not enough.</q> she points out, looking at you  
 expectantly while she waits for the balance. "; 
 else 
 {

"{The shopkeeper/she} takes the money and turns to take  
 <<saleObject.aName>> off the shelf. She hands you  
 <<saleObject.theName>> saying, <q>Here you are then"; 
 if(cashReceived > price) 
 ", and here's your change"; 
 ".</q></p>"; 
 saleObject.moveInto(gPlayerChar); 
 price = 0; 
 cashReceived = 0; 
 saleObject = nil;      
 }

cashFuseID = nil;  



143

}
;

The cashReceived property holds the number of coins that have been handed 
over to the shopkeeper in the current transaction; price is the number of coins needed 
in total to complete the transaction; saleObject is the object that will be handed over 
to the player on completion of the transaction; and cashFuseID points to the current 
fuse if there is one (we need this only so we can tell if there is a current fuse). 

The cashFuse method is called when the fuse fires; if saleObject is nil Heidi 
has handed over some money without saying what she wants to buy with it, so we 
simply give the shopkeeper a suitable message to display, suggesting the player 
specifies what she or he wants to buy, and resetting cashReceived to zero ready for the 
next transaction. Otherwise, if a transaction is in process but the money handed over 
isn't enough to pay for the goods, the shopkeeper simply displays a message to the 
effect that she's expecting more cash. If however, there is a current transaction and 
enough money has been handed over, the routine moves the object requested 
(saleObject) to the player character, displays a suitable message, and resets all the 
relevant properties ready for a new transaction; if the player has actually handed over 
too much money an additional message is displayed to that effect. Finally, whatever 
else has happened, cashFuseID is reset to nil to show that there's no longer a current 
CashFuse.

The next job is to create the GiveShowTopic that will handle the handing over 
of coins. This will look a bit different from the GiveShowTopics we've seen before, 
both because of what it has to match, and because of what it has to do. We can't use 
the template because we have no way of specifying an object for this topic to match; 
instead is has to match any object belonging to the Coin class. We achieve this effect 
by overriding the matchTopic method; this method returns a score which is typically 
100 for a good match and 0 for no match at all (the idea being that the TopicEntry 
with the highest score will be the one selected for matching); for any given 
TopicEntry the score is held in the matchScore property, so we make matchTopic 
return matchScore if an object is of class Coin and 0 otherwise.40 This is also a good 
occasion for using the handleTopic method rather than the TopicResponse to handle 
the action, since it gives us access to the object that we want to manipulate, (as the obj 
parameter): 

 
++ GiveShowTopic 
 matchTopic(fromActor, obj) 
 {

return obj.ofKind(Coin) ? matchScore : 0; 
 }

handleTopic(fromActor, obj) 
 {

if(shopkeeper.cashFuseID == nil)          
 shopkeeper.cashFuseID = new Fuse(shopkeeper, &cashFuse, 0);                    
 shopkeeper.cashReceived ++; 
 if(shopkeeper.cashReceived > 1) 
 "number <<shopkeeper.cashReceived>>"; 
 if(shopkeeper.cashReceived <= shopkeeper.price) 
 obj.moveInto(shopkeeper); 
 }
;

40 For a fuller discussion of the matching score, see the article on 'Programming Conversations with 
NPCs' in the Technical Manual.



144

The handleTopic method will be called once for every coin that's handed over; 
for example, if the player types give three pound coins to shopkeeper, it will be run 
three times. We want a new Fuse created only the first time, so we first check whether 
shopkeeper.cashFuseID is nil before creating a new fuse and pointing the 
shopkeeper.cashFuseID property to it. We want to know how many coins are being 
handed over, so we increment shopkeeper.cashReceived each time through the loop. 
If the command involves multiple coins, the game will print "pound coin:" on a new 
line for each pass through the loop; to make this look slightly less superfluous we 
make it look like the coins are being counted out by printing "number two" etc. just 
after the "pound coin" display, but we don't do this the first time, in order to avoid an 
unnecessary "number one" if only one coin is handed over. Finally, we want to 
transfer the coins from the player character to the shopkeeper, but only up to the 
number of coins needed to meet the price asked for; any surplus coins are left in the 
player character's inventory. The whole GiveShowTopic should go in with the other 
topic entries under the sallyTalking state. 

The final stage is to create the AskAboutForTopic objects (which will respond 
to either ask for or ask about) that will allow Heidi to request either a battery or a 
bag of sweets. The logic in each case is a little complicated, since there will be several 
things to check for (as we shall see). To avoid having to code this complicated logic 
twice over, we shall define a custom BuyTopic class (descended from 
AskAboutForTopic) which will handle all the complications, then simply create two 
BuyTopic objects, one for the battery and one for the sweets. Normally, one would use 
AltTopic to avoid burdening TopicEntry objects with a lots of if… else… type 
constructions, but since we want to encapsulate all the complexities of the behaviour 
in one class, we shall have to resort to if and else in the definition of that class: 

 
class BuyTopic : AskAboutForTopic 
 topicResponse 
 {

if(matchObj.saleItem.moved)     
 alreadyBought(); 
 else if (shopkeeper.saleObject == matchObj.saleItem) 
 "<q>Can I have the <<matchObj.saleName>>, please?</q> you ask.<.p> 
 <q>I need another <<currencyString(shopkeeper.price -  
 shopkeeper.cashReceived)>> from you.</q> she points out.<.p>"; 
 else if (shopkeeper.saleObject != nil) 
 "<q>Oh, and I'd like a <<matchObj.saleName>> too, please.</q> you  
 announce.<.p> 
 <q>Shall we finish dealing with the <<shopkeeper.saleObject.name>>  
 first?</q> {the shopkeeper/she} suggests. "; 
 else 
 {

purchaseRequest(); 
 purchaseResponse(); 
 shopkeeper.price = matchObj.salePrice; 
 shopkeeper.saleObject = matchObj.saleItem; 
 }

}
alreadyBought = "You've already bought a <<matchObj.saleName>>.<.p>" 

 purchaseRequest = "<q>I'd like a <<matchObj.saleName>> please,</q> you 
 request.<.p>" 
 purchaseResponse = "<q>Certainly, that'll be  
 <<currencyString(matchObj.salePrice)>>,</q> 
 {the shopkeeper/she} informs you.<.p>" 
;

We provide the properties alreadyBought, purchaseRequest and 
purchaseResponse to allow easy customization of the messages displayed by a 



145

BuyTopic, while at the same time providing acceptable default values for these 
properties that will allow a BuyTopic to be used without any customization. Note that 
we are using matchObj to get at the actual object that a given BuyTopic matches.  

The topicResponse method then runs through a series of checks to trap the 
conditions under which we should not initiate a new transaction. First of all we check 
whether we've already purchased this object – note that the way we've things up the 
object purchased (moved into the player character's inventory) won't be the matchObj 
itself (which refers to the items sitting on the shelf) but the object referred to in the 
matchObj's saleItem property, so we check whether the latter has been moved; if it 
has, it's already been sold so we simply display the message defined in alreadyBought 
and take no further action. 

The next condition we check for is whether the player is already part of the 
way through paying for the object requested. E.g. if the player typed ask shopkeeper 
for battery and then give her two pounds, there'd still be one pound to pay; here we 
trap the possibility that the player then types ask shopkeeper for battery again. If the 
transaction is already under way but incomplete, the saleObject property of the 
shopkeeper will have been set to the object asked for, so we test for this being the 
same as the saleItem corresponding to the matchObj. If it is, we display a message 
telling the player how much there is still to pay and take no further action. 

The third possibility we have to eliminate is that the player may ask for one 
item, and then ask for another before the first transaction is complete; e.g. by entering 
the commands, ask shopkeeper for battery, give her one pound, ask her for 
sweets. If a transaction is in progress shopkeeper.saleObj will point to the object 
being purchased, since we have already tested for this being the object associated with 
matchObj, if we reach this point and shopkeeper.saleObj is not nil, it must be some 
other object. We accordingly display a message suggesting that the player should 
concentrate on buying one thing at a time. 

Finally, if we have fallen at none of the preceding hurdles, we are in the 
position to set up a new transaction. This is fairly simple. First we display the player 
character's request (defined in purchaseRequest), which should normally say what 
Heidi wants to buy, then the shopkeeper's response (defined in purchaseResponse), 
which should say what the price is; the default values we define for these two 
properties will do this automatically, but these properties can be overridden to allow a 
greater variety of conversational interchanges at this point. Finally we set up the 
transaction by setting the two appropriate properties on the shopkeeper. 

In a couple of places the code employs a custom function 
currencyString(amount), which simply returns a string spelling out an amount in 
pounds (e.g. currencyString(3) would return 'three pounds'). We can use the library 
function spellInt to do most of the work, so this function is defined simply as: 

 
currencyString(amount) 
{

return spellInt(amount) + ' '  + ((amount>1) ? 'pounds' : 'pound');   
}

If you are using dollars, euros, yen or denarii instead of pounds, remember to 
change this function accordingly. 

Finally, we need to define the two BuyTopics to cope with the battery and the 
sweets. This then becomes very straightforward: 

 



146

++ BuyTopic @batteries 
 alreadyBought = "You only need one battery, and you've already bought 
it.<.p>" 
;

++ BuyTopic @sweets 
 alreadyBought = "You've already bought one bag of sweets. Think of your 
 figure! Think of your teeth!<.p>" 
;

And this, apart from a few minor tweaks we shall be looking at in the next 
chapter, takes The Further Adventures of Heidi as far as this Guide is going to take 
them. If you compile and run the game again (after correcting any syntax errors and 
the other mysterious bugs that may have arisen through your mistyping or your 
computer's intrinsic cussedness), you should now be able to play it all the way 
through (which may take all of five minutes). 

 
c. Generalizing Financial Transactions 

The way we have defined BuyTopic would make it relatively easy to add to the 
items that Heidi could buy. All you would need to do is to define another object to sit 
on the shelf, a corresponding item to be handed over to Heidi, and the corresponding 
BuyTopic; to give a minimalist example: 

 
/* Put this just after the shelf */ 
++ pears : Distant 'pear*pears' 'pears on shelf' 
"A basket of fresh pears sits on the shelf behind the counter. " 
 isPlural = true    
 salePrice = 2 
 saleName = 'pear' 
 saleItem = pear 
;

pear : Food 'pear' 'pear' 
 "It's fresh-looking, green, and somewhat pear-shaped. " 
 ; 
 
/*Make sure this gets contained in sallyTalking */ 
BuyTopic @pears; 

 

Provided you also add to the stock of pound coins (or whatever currency 
you're using) to cover the cost of all the items that could be purchased, it would be 
reasonably easy to going on adding as many buyable items as you wanted – provided 
they could all be priced in a small number of round pounds (or dollars, yen, roubles, 
drachmae, sesterces, euro, shekalim or whatever other currency takes your fancy). As 
soon as you want to start handling large amounts of money, and/or prices in pounds 
and pence (or dollars and cents etc.) the whole thing will start to become quite 
unwieldy. You certainly don't want to have to cope with handling individual twenty 
pound notes, ten pound notes, five pound notes, two pound coins, one pound coins, 
50p, 20p, 10p, 5p, 2p and 1p coins in all possible combinations and permutations 
(dollars, dimes, nickels, quarters and cents would be quite bad enough). You'd do far 
better to define a single money object, with a value property stating how much money 
it represents at any one time, e.g.: 

 



147

money : Thing 'cash/money' 'money' 
 @outsideCottage 
 "A quick count reveals that it comes to <<currencyString(value)>>. " 
 value = 1204  
 isPlural = true 
;

Note that here we've chosen to store the value in the lowest denomination 
(pence, cents etc.) so any calculations can be handled as integer arithmetic (although 
you could always experiment with the BigNumber class as an alternative). One would 
then need to redefine the function currencyString to convert a value in pence, say, to 
a £12.04 display format. 

 
function currencyString(amount) 
{

local valStr = ' &#163;';  /* £ sign; for dollars you could simply use 
 '$' */ 
 valStr += (amount / 100); 
 valStr += '.'; 
 local pence = amount % 100; 
 if (pence < 10) 
 valStr += '0'; 
 valStr += pence; 
 return valStr; 
}

The implementation of transactions would then become easier. They could be 
set up in exactly the same way (with a BuyTopic), but then one could implement a 
routine to respond simply to give money to shopkeeper or pay shopkeeper. This 
would simply have to check that enough money was available, and, if so, deduct it, 
e.g. 

 
++ GiveTopic @money 
topicResponse 
{

money.value -= shopkeeper.price; 
 "You hand over the money and the shopkeeper gives you  
 <<shopkeeper.saleObject.theName>>.<.p>"; 
 shopkeeper.saleObject.moveInto(gPlayerChar); 
 if(money.value == 0) 
 {

"But you've used all your money!<.p>"; 
 money.moveInto(nil); 
 }
}
;

+++ AltTopic 
 "You don't have enough money to pay.<.p>" 
 isActive = (shopkeeper.price > money.value) 
;

+++ AltTopic 
 "<q>What's this for?</q> asks {the shopkeeper/she}, handing the 
 money back, <q>Shouldn't you tell me what you want to buy 
 first?</q>" 
 isActive = (shopkeeper.saleObject == nil) 
;

Note that with this method there's no longer any need to use a fuse, so that all 
the shopkeeper.cashFuse method could be eliminated altogether. Similarly, since with 



148

this revised model there's no possibility of the player character issuing a command 
mid-transaction, so the definition of BuyTopic could be simplified considerably: 

 
class BuyTopic : AskTopic 
 topicResponse 
 {

if(matchObj.saleItem.moved)     
 alreadyBought();     
 else 
 {

purchaseRequest(); 
 purchaseResponse(); 
 shopkeeper.price = matchObj.salePrice; 
 shopkeeper.saleObject = matchObj.saleItem; 
 }

}
alreadyBought = "You've already bought a <<matchObj.saleName>>.<.p>" 

 purchaseRequest = "<q>I'd like a <<matchObj.saleName>> please,</q> you  
 request.<.p>" 
 purchaseResponse = "<q>Certainly, that'll be  
 <<currencyString(matchObj.salePrice)>>,</q> 
 {the shopkeeper/she} informs you.<.p>" 
;

In this way, the handling of the apparently more general and complex situation 
could actually be made rather simpler than the code we needed to handle four pound 
coins! 

If you'd like to experiment with this, you could try it out in the Heidi game as 
an alternative to handling the four pound coins separately. Since most of the 
principles have now been spelt out, this may once again be left as an exercise for the 
reader. 



149

5. Quick Summary 

The main problem that has been exercising us in this chapter has been how to 
handle money. We have also introduced daemons and fuses, the implementation of a 
vehicle (a boat) and a torch (or flashlight), as well as a ComplexContainer which can 
be used to put things both in and on.  In the course of seeing how it's all done we've 
encountered the following new library features: 

 
New Classes: 
AskForAboutTopic 
ComplexContainer 
Component 
Dispensable 
Dispenser 
Distant 
DarkRoom 
Food 
Heavy 
Flashlight  
OpenableContainer 
SenseConnector (properties: connectorMaterial & locationList) 
Topic 
 
SoundEvent 
SoundObserver (use with notifySoundEvent(event, source, info)) 
 
Daemon – new Daemon(obj, prop, interval) 
Fuse – new Fuse(obj, prop, interval) 
 
Other Stuff 
attentionSpan 
takeTurn() [method of ActorState] 
isPlural 
isEquivalent 
bulk 
 
matchNameCommon(origTokensm adjustedTokens) 
Weak Tokens – designated by parentheses, e.g. '(garden) shed' 
 
spellInt(number) [general purpose function] 
addToScoreOnce(points) – method of Achievement class 
 
'&#163' = '£' (pound sign) [example of HTML entity] 



150

Chapter Eight -   Finishing Off 
 

1. Filling in Some Gaps 

a. Atmosphere Strings 

We have now taken the Further Adventures of Heidi about as far as it's worth 
taking them for the purposes of this Guide. It would be perfectly possible to go on 
adding in some further obstacles between Heidi and that ring (perhaps the oars could 
be hidden in a less obvious place, or the pound coins more widely dispersed), but it 
would become increasingly difficult to devise something that introduced a new 
feature of the library in a worthwhile way, and it might be better to leave such 
extensions as an exercise to any readers who wants to practice what they have learnt. 
Instead, we shall look at a few ways in which the library can help lend a bit more 
atmosphere to the game we've already created. 

For the first example, consider the forest through which Heidi keeps passing. 
As it stands, the only other living creature she ever encounters there is Joe the 
charcoal burner; but one would expect a real forest to have all sorts of life in it. It's not 
worth creating lots of animal objects to represent the living forest, but we can use the 
atmosphereStrings property to simulate its presence. Rather than coding a separate 
atmosphereStrings for each room we consider to be part of the forest, it will be 
quicker and easier to define our own ForestRoom class that encapsulates this 
behaviour: 

 
class ForestRoom : OutdoorRoom 
 atmosphereList : ShuffledEventList 
 {

[
'A fox dashes across your path.\n', 

 'A clutch of rabbits dash back among the trees.\n', 
 'A deer suddenly leaps out from the trees, then darts back off into 
 the forest.\n', 
 'There is a rustling in the undergrowth.\n', 
 'There is a sudden flapping of wings as a pair of birds take flight  
 off to the left.\n' 
 ]

eventPercent = 90 
 eventReduceAfter = 6 
 eventReduceTo = 50 
 }
;

Defining a ShuffledEventList as a nested object should be familiar by now. 
The Room class has a built-in Room daemon that will call the doScript method of 
atmosphereList; in other words, all we have to worry about is defining the list for 
eventList, (a property defined in the template for the EventList class, so we don't 
need to name it explicitly), and they'll automatically be displayed. We can, however, 
exercise some control over the frequency with which they're displayed, and that's 
what the three properties eventPercent, eventReduceAfter, and eventReduceTo are for. 
As we have set it up, the messages we have defined will first be displayed 90% of the 



151

time, but after 6 turns this will fall to 50%. There is no need to define these properties 
at all; if none of them is overridden, then one of the messages in the list will be 
displayed each time the player character is in a room of class ForestRoom; if only the 
first is overridden, then that message frequency will be maintained throughout the 
game. The purpose of these properties is we can only define a finite number of 
strings, and after the player has seen them the first couple of times their appeal may 
start to wear a little thin; reducing their frequency may therefore help towards 
increasing the longevity of their positive contribution to the playing experience. 

The three rooms that might best be redefined as belonging to the ForestRoom 
class are forest, clearing, and forestPath; you could also add define fireClearing 
to be of class ForestRoom, but in practice you'll probably find that the atmosphere 
strings tend to get in the way of the conversation with Joe. 

 
b. Sensory Emanations 

However, there is a different kind of atmospheric upgrade we could apply to 
the fireClearing. We have a fire billowing forth smoke, and so far we have smoke 
that makes its presence known to the nostrils only when the player explicitly chooses 
to smell it. In such a situation one might expect Heidi's nostrils to be assaulted by the 
smell of smoke whether she makes an active attempt to sniff it or not. We can 
simulate this by locating an Odor object directly inside our smoke object (having 
removed the smellDesc property from smoke), thus: 

 
++ Odor 'acrid smoky smell/whiff/pong' 'smell of smoke' 
 sourceDesc = "The smoke from the fire smells acrid and makes you cough. "   
 descWithSource = "The smoke smells strongly of charred wood." 
 hereWithSource = "You catch a whiff of the smoke from the fire. " 
 displaySchedule = [2, 4, 6] 
;

The hereWithSource message is displayed as part of the room description, and 
then at intervals defined in the displaySchedule list (in this case first after two turns, 
then after four turns, and finally every six turns; if we wanted to switch the smell 
messages off altogether we could end this list with nil). This both stops the message 
from becoming too intrusive and repetitive, and also models the way in which human 
senses tend to take note of the environment. The property sourceDesc contains what 
will be displayed if you the player smells the object from which the smell emanates, 
in this case the smoke (i.e. it will be displayed in response to smell smoke), while the 
descWithSource property contains what will be displayed if the player refers directly 
to the Odor object, e.g. with x smell or smell smoky whiff. There are also 
descWithoutSource and hereWithoutSource properties that would contain messages to 
be displayed in the event of the source of the odour, in this case the smoke, being 
obscured from the player character; but since in this case the smoke from the fire is all 
too visible we don't need to define these properties (if, however, one had, for 
example, a dead rat concealed in a sandwich box, one could then use these two 
properties to contain messages appropriate to the situation before the player opens the 
box and discovers the source of the offensive odour; whether and where to include 
"You smell a rat" I leave to the discretion of the reader).  

If you want to vary the message displayed according to the schedule, you can 
override hereWithSource (and/or hereWithoutSource if appropriate) with a method 



152

that checks the displayCount property (which is reset to 1 each time after the object 
comes within sensory range after it has left it (in this case, each time you return to the 
fire clearing after having been somewhere else). For example: 

 
hereWithSource 
{

switch (displayCount) 
 {

case 1: 
 "You catch a whiff of the smoke from the fire. "; 
 break; 
 case 2: 
 "You catch another whiff of smoke from the fire. "; 
 break; 
 default: 
 "You catch yet another whiff of smoke from that wretched fire. "; 
 }
}

An alternative, if you were not concerned about restarting the list every time 
the object came into scope, would be to define the hereWithSource method to call the 
doScript method of an EventList object (which could be a nested object attached to 
the custom property of your Odor). 

Note that you can also define a Noise object in much the same way as the Odor 
object is defined here (there are a couple of examples in sample.t). Perhaps, for 
example, the fire is making a crackling sound – once again the implementation can be 
left as an exercise for the interested reader (begin by defining ++Noise 'crackling 
sound/noise' 'crackling sound' directly after the fire object, and then follow 
precisely the same format as used for the Odor object, making the obviously necessary 
adjustments to refer to sounds instead of smells). 

 
c. Settling the Score 

The maximum score you can obtain by winning the game is 7. Clearly we 
need to know how to adjust the maximum score; this is done by adding the following 
to the gameMain object, (which you may already have done if you copied the startup 
code from the start of chapter 3). 

 
maxScore = 7 
 
The whole gameMain object for Heidi should look like this: 
 

gameMain: GameMainDef 
 initialPlayerChar = me 
 showIntro() 
 {

"Welcome to the Further Adventures of Heidi!\b"; 
 }

showGoodbye() 
 {

"<.p>Thanks for playing!\b"; 
 }

maxScore = 7      
;



153

The other routines do what they say: showIntro() shows the introductory text 
for the game (which you can make more elaborate if you wish), while showGoodBye() 
shows a terminating message when the game ends. 

Of course, you may think that there should be more opportunities for gaining 
points. In that case you can add more addToScore calls at the appropriate places, being 
careful to ensure than they can only be called once (or use the addToScoreOnce method 
on new Achievement objects), and then adjust gameMain.maxScore accordingly. 

 
d. Destination Names 

If at the start of the game you type the command east followed by the 
command exits you'll see the response: 

 
Obvious exits lead south; west, back to the in front of a cottage; and northeast. 
 
This is less than ideal; "back to the in front of a cottage" is not exactly elegant. 

And you'd get much the same thing if you tried, for example, to go north from this 
location and the game helpfully tried to display the valid exits. What's happening, of 
course, is that the game is using the name we gave to the first room ("In Front of a 
Cottage"), converting it to lower case, and then displaying that as a description of 
where the path west leads back to from the forest. In this case, though, we'd prefer to 
see something like "back to the front of the cottage". Well, that's what TADS 3 
provides the destName property for. In order to fix the problem with the exit listing, 
all we need to do is to add the line: 

 
destName = 'the front of the cottage' 
 
to the definition of outsideCottage. In fact, you may recall when we first 

introduced the Room template, it contained a convenient slot for destName (because 
the need to change destName from the default is quite common). So instead of adding 
the above line, we could simply change the start of the definition of outsideCottage 
to: 

 
outsideCottage : OutdoorRoom 'In front of a cottage'  
 'the front of the cottage'  
 "You stand just outside a cottage; the forest stretches east. 
 A short path leads round the cottage to the northwest. " 

 
Clearly, this is not the only place in the Further Adventures of Heidi where we 

need to do this. Another example would be the topOfTree room: 
 

topOfTree : OutdoorRoom 'At the top of the tree' 'the top of the tree' 
 "You cling precariously to the trunk, next to a firm, 
 narrow branch. " 

 
The principle should (hopefully) now be clear enough, so I'll leave it as an 

exercise to the reader to check down the other rooms that need a destName adding 
(some of them will be fine as they are) and to add destNames as appropriate. You can 
then compare your efforts with those in the heidi.t file that should have come with this 
guide. 

 



154

e. Stopping Sally's Misbehaviour 

Sally is actually a pretty well-behaved shopkeeper most of the time, but there 
is a particular set of circumstances under which her behaviour – or at least the way it's 
reported – can become a little odd. If Heidi enters the shop, rings the bell, and leaves 
immediately (ring bell followed by north), the player will still see the message about 
the shopkeeper entering the shop, and the shopkeeper will still start a conversation, 
even though her customer is not actually there. Although the player may be unlikely 
to enter this sequence of commands, we really ought to try to anticipate anything the 
player might type, and so we do need to fix this bug. 

The easiest way to go about it is to stop the daemon code actually executing 
unless Heidi is in the shop. We can do that by rewriting the shopkeeper's daemon 
method thus: 

 
daemon 
 { 
 if(gPlayerChar.isIn(insideShop)) 
 {

moveIntoForTravel(insideShop); 
 "{The shopkeeper/she} comes through the door and  
 stands behind the counter.<.p>"; 
 daemonID.removeEvent(); 
 daemonID = nil;    
 initiateConversation(sallyTalking, 'sally-1'); 
 }
}

This will work reasonably well; since the daemon has been set up to execute 
on the second turn, once the bell is rung, the daemon will keep checking every second 
turn to see whether Heidi is inside the shop, and if she is, will then move the 
shopkeeper into the shop and start the conversation. Thus if Heidi leaves the shop 
immediately after ringing the bell, the shopkeeper won't move or start talking until 
Heidi returns. It is theoretically possible that Heidi could keep missing the shopkeeper 
by entering the shop on the odd turns and leaving again immediately, but it's unlikely 
that a player who's interested in having Heidi meet the shopkeeper would actually 
keep making that sequence of moves. 

Nonetheless, this solution is not quite ideal. Probably what ought to happen is 
that the shopkeeper should come into the shop on the second turn after the bell is rung 
regardless of whether Heidi remains in the shop or not, but her movement into the 
shop should only be reported if Heidi is in the shop to see it. We can achieve this 
quite straightforwardly by employing a SenseDaemon in place of the plain Daemon. To 
do this, find the shopkeeper's notifySoundEvent method and change the line: 

 
daemonID = new Daemon(self, &daemon, 2); 
 
to read: 
 
daemonID = new SenseDaemon(self, &daemon, 2, self, sight); 
 
A SenseDaemon is a special kind of Daemon that executes as normal except that 

it only displays anything if the player character can sense a particular object (the 
source) with a particular sense. The last two parameters of the call to new SenseDaemon 
are the source and the sense involved. In this case the source is the shopkeeper (which 



155

can be referred to here as self since we are setting up this SenseDaemon in a method of 
the shopkeeper object) and the sense is sight. The effect of this is (if we revert to the 
older definition of the shopkeeper.daemon method) is that the shopkeeper will move 
on the second turn after the bell is rung, but will only be reported as moving if Heidi 
is there to see it. 

There's still one thing left to fix; although it's okay for Sally to come into the 
shop in response to the bell regardless of whether Heidi stays there to meet her or not, 
she should only start talking to Heidi if Heidi has indeed remained in the shop. We 
could use the test if(gPlayerChar.isIn(insideShop)) as before, but we could also 
employ a different test. In this case, since what we're really testing is whether Sally 
can talk to Heidi, it would be reasonable to use her canTalkTo method. The relevant 
part of the revised shopkeeper code then becomes: 

 
shopkeeper : Person, SoundObserver 'young shopkeeper/woman' 'young 
shopkeeper' 
 @backRoom 
 "The shopkeeper is a jolly woman with rosy cheeks and  
 fluffy blonde curls. " 
 isHer = true 
 properName = 'Sally' 
 notifySoundEvent(event, source, info) 
 { 
 if(event == bellRing && daemonID == nil && isIn(backRoom)) 
 daemonID = new SenseDaemon(self, &daemon, 2, self, sight); 
 

else if(isIn(insideShop) && event == bellRing) 
 "<q>All right, all right, here I am!</q> says  
 {the shopkeeper/she}.<.p>"; 
 
}
daemonID = nil 

 daemon 
 {    
 moveIntoForTravel(insideShop); 
 "{The shopkeeper/she} comes through the door and  
 stands behind the counter.<.p>"; 
 daemonID.removeEvent(); 
 daemonID = nil;    
 if(canTalkTo(gPlayerChar)) 
 initiateConversation(sallyTalking, 'sally-1');    
 } 
 
… // continue as before 
;

f. Finishing the Boat 

There's just a couple of problems with our implementation of the boat, which 
we might like to fix now. 

First of all, if the player enters the command row the boat when Heidi is in 
the garden, the game will reply with "You can't row that.", which is not entirely true. 
We need to provide a more appropriate response here. Again this is something you 
can probably work out how to do yourself by now, so have a go at it before reading 
on. 

The second problem is a bit more subtle. Suppose that after issuing the 
command row the boat when Heidi is in the garden, the player types enter it 
followed by row it. The game will now respond with "The word 'it' doesn't refer to 



156

anything right now." You can probably work out why: the parser thinks that 'it' refers 
to the object we used to implement the outside of the boat, but once Heidi's entered 
the boat, that object is no longer in scope. We can cure this by using the getFacets 
property. This holds a list of other objects that we, the game author, consider to be 
facets of the same object, so that once we've referred to any of the objects 
representing the boat, the pronoun 'it' can refer to any of its facets currently in scope. 
So, for example, if we give the name rowBoat to the previously anonymous Fixture 
we placed in insideBoat to act as the target of a row command, we can now define 
getFacets = [rowBoat] on the boat object, and conversely getFacets = [boat] on 
the rowBoat object, and having referred to one, we can freely use 'it' to refer to the 
other. 

The definition of the boat then becomes: 
 

boat : Heavy, Enterable -> insideBoat 'rowing boat/dinghy' 'rowing boat' 
 @cottageGarden 
 "It's a small rowing boat. " 
 specialDesc = "A small rowing boat floats on the stream,  
 just by the bank. " 
 useSpecialDesc { return true; } 
 dobjFor(Board) asDobjFor(Enter) 
 dobjFor(Row) 
 {

verify() 
 {

illogicalNow('You need to be aboard the boat before you can row it. '); 
 }

}
getFacets = [rowBoat] 

;

Notice the use of the illogicalNow() macro for handling row boat when Heidi 
is standing on the bank. It is illogical to try to row a boat when we're not in it, but it is 
not illogical to try to row a boat under all circumstances, so even under these 
circumstances row boat is less illogical than, say, row sky or row stream.

g. Other Suggestions – including an MultiInstance 

There are also a several other things you could add that don't involve anything 
we have not already seen, including various Decoration (or, where appropriate, 
Distant) objects to deal with things mentioned in various room descriptions but not 
otherwise implemented, and various additional NoTravelMessages or FakeConnectors 
to deal more elegantly with the boundaries of our game world (e.g., the village 
mentioned in the description of the jetty location should perhaps be implemented as a 
Distant object in that room, and one or two FakeConnectors should be added to the 
meadow to explain why the only way Heidi can leave it is back across the stream). 
Since these involve nothing new, the reader can try them for him or herself. 

But one new thing of this type does suggest itself, and that is putting some 
trees in the forest, since allowing the player to experience the following would be less 
than optimal: 

 
Deep in the Forest 
 
Through the deep foliage you glimpse a building to the west. A track leads to the northeast, 



157

and a path leads south. 
 
There is a rustling in the undergrowth. 
 
>x trees 
The word "trees" is not necessary in this story. 

 
If one is in a forest, one can reasonably expect to find trees, but rather than 

defining a different "trees" decoration object in all forest locations, we can simply use 
an MultiInstance to place our 'trees' object in every ForestRoom:
MultiInstance    
 instanceObject : Decoration { 'pine tree*trees*pines' 'pine trees' 
 "The forest is full of tall, fast-growing pines, although the 

 occasional oak, 
 beach and sycamore can occasionally be seen among them. " 
 isPlural = true  
 }

initialLocationClass = ForestRoom 
;

The slight complication here is that we have to define the instanceObject as a 
nested object within the MultiInstance object. We define it to be of class Decoration 
since the only interaction the player will have with the trees is to look at them. The 
effect of this code is that the game will create an instance of the 'pine trees' 
Decoration object in every location of the ForestRoom class. The MultiInstance class 
saves us the bother of having to do this by hand. 

We could have implemented these trees as a MultiLoc, and in this particular 
game there would have been no functional difference. Strictly speaking, though, 
MultiInstance is the more correct class to use here. The main use for a MultiLoc is for 
a single physical object that exists in more than one location by virtue of being 
situated at the border of two or more rooms. For example, a large town square with a 
fountain at its centre might be implemented as four rooms, with the central fountain 
being a MultiLoc that appears in each. It is physically the same fountain whether it is 
viewed from, say, the northeast or the southeast corner of the square, and if the Player 
Character throws a coin into the fountain from the northeast corner of the square, he 
or she should then be able to retrieve it from the fountain even after moving to another 
part of the square, since it remains the same physical fountain. A MultiLoc may also 
be used for a Distant object, such as a far-off mountain range or the moon, that is 
visible from a number of different locations, since once again it is the same physical 
object that is being represented (provided it appears identical from all the locations in 
question).  

But in this case, we are not trying to implement the same clump of trees 
visible from all parts of the forest, but the fact that there are trees, albeit numerically 
different trees, in all parts of the forest. Since all these trees are functionally identical 
(apart from the sycamore tree in the clearing that we have implemented separately) 
we can use MultiInstance as a short-cut to creating them all over the forest. Although 
in this game it makes no practical difference to the player whether we use a MultiLoc 
or a MultiInstance, in general it may. If, for example, Heidi were exploring the forest 
by night, then MultiLoc trees illuminated in one room would appear illuminated in all 
rooms (since they represent the same physical object).  This would mean that if Heidi 
dropped her torch/flashlight at one spot in the forest and then moved to another part of 
the forest without any illumination, she'd be in a totally dark room but still be able to 



158

examine the trees, which is probably not what we'd want. Using MultiInstance 
ensures that we do note get this sort of unwanted behaviour. 

You might think that a problem here would be that if the player types examine 
tree while Heidi is in the sycamore tree clearing, the parser will ask, "Which tree do 
you mean, the pine trees or the tree?". But in fact the library automatically takes care 
of this by giving a Decoration object a lower 'logical rank' than a normal object; that 
means that if two objects are in scope which might match the same vocabulary, one of 
them being a Decoration object and the other not, the other will be chosen in response 
to an examine command. So in this case when the player types examine tree the 
parser will assume that it is the sycamore tree that is meant, without troubling the 
player with a disambiguation request. For a fuller discussion of 'logical rank' see p. 72 
above (and the section on 'Action Results' in the Technical Manual). 

 
One more thing you might like to consider is letting the player know that you 

have defined a couple of custom verbs (although in this case it's arguably 
superfluous). You can do that by overriding the customVerbs property of 
InstructionsAction, thus: 

 
modify InstructionsAction 
 customVerbs = ['ROW THE BOAT', 'CROSS STREAM', 'RING THE BELL' ] 
;

Then, when players type an instructions command, your custom verbs will be 
included in the list of game verbs the instructions text tells them about.  

 
2. Counting the Cash 

That the handling of cash could actually be simplified if one stops to think 
about implementing a more general solution shows that there's often more than one 
way to make a mousetrap in code, and that the first workable solution one comes up 
with isn't necessarily the best, the easiest or the most elegant. Even if we wanted to 
stick to having four coins in our game rather than a more abstract concept of money, 
we could have handled it better, and produced a better-looking output as a result. So 
for the sake of completeness we'll look at another way this could have been handed, 
although it is not exactly for the faint-hearted and introduces some techniques that are 
really rather advanced for a Getting Started guide; it may thus be this is something 
you'll want to skip on first reading. 

The way we went about it before, using a fuse to sum up the result of handing 
over multiple coins in one turn, is perfectly workable, but the library does offer 
another way of doing it which, if not a great deal simpler, at least offers better control 
over what is displayed to the player. This is illustrated by the routine for handing 
coins to Bob in the sample game. We can adapt that code to our situation by 
redefining the shopkeeper's GiveTopic object for coins thus: 

 
++ GiveShowTopic 
 matchTopic(fromActor, obj) 
 {

return obj.ofKind(Coin) ? matchScore : 0;      
 }

handleTopic(fromActor, obj) 
 {

shopkeeper.cashReceived ++; 



159

currency = obj; 
 if(shopkeeper.cashReceived <= shopkeeper.price) 
 obj.moveInto(shopkeeper); 
 /* add our special report */ 
 gTranscript.addReport(new GiveCoinReport(obj)); 
 

/* register for collective handling at the end of the command */ 
 gAction.callAfterActionMain(self); 
 

}
afterActionMain() 

 {
/* 

 * adjust the transcript by summarizing consecutive coin 
 * acceptance reports  
 */ 
 gTranscript.summarizeAction( 
 {x: x.ofKind(GiveCoinReport)}, 
 {vec: 'You hand over ' 
 + spellInt(vec.length())+' ' + currency.name+'s.\n' }); 
 if(shopkeeper.saleObject == nil) 
 {

"<q>What's this for?</q> asks {the shopkeeper/she}, handing the  
 money back, <q>Shouldn't you tell me what you want to buy  
 first?</q>"; 
 shopkeeper.cashReceived = 0;  
 }

else if(shopkeeper.cashReceived < shopkeeper.price) 
 "<q>Er, that's not enough.</q> she points out, looking at you  
 expectantly while she waits for the balance. "; 
 else 
 {

"{The shopkeeper/she} takes the money and turns to take 
 <<shopkeeper.saleObject.aName>> 
 off the shelf. She hands you <<shopkeeper.saleObject.theName>> saying, 
 <q>Here you are  then"; 
 if(shopkeeper.cashReceived > shopkeeper.price) 
 ", and here's your change"; 
 ".</q></p>"; 
 shopkeeper.saleObject.moveInto(gPlayerChar); 
 shopkeeper.price = 0; 
 shopkeeper.cashReceived = 0; 
 shopkeeper.saleObject = nil; 
 }

}
currency = nil 

;

The first thing you should notice about this is that we have effectively moved 
the code from the shopkeeper's cashFuse method into the new afterActionMain() 
method of the GiveShowTopic. This does mean that we now have to refer to all the 
properties involved as shopkeeper.whatever instead of just whatever, which makes it 
look a bit more complicated (this might be an argument for redefining these all as 
properties of the GiveShowTopic, but that would involve corresponding changes on the 
BuyTopic definition, so we shall not do it here). It also means that we can remove the 
cashFuse code from the shopkeeper object and that we no longer need  to set up the 
fuse at all. 

Clearly this is not the whole story; we have also replaced the entire fuse 
mechanism. In effect the call to gAction.callAfterActionMain(self) in handleTopic 
does a job analogous to the call to shopkeeper.cashFuseID = new Fuse(shopkeeper, 
&cashFuse, 0) that it replaces, in that it registers that once we have iterated over all 
the coins being given in this command, we want to handle the aggregate result of the 



160

transaction in the afterActionMain() method of self, i.e. the current object. Note that 
unlike the code to create a new fuse, there is no need to check that this has not been 
called on a previous iteration, since the registration will only be effective first time 
round. So far, there is not a great gain of simplicity compared with using the fuse to 
do the same job, but we are at least using a library mechanism designed to do the job 
we want, rather than trying to invent our own ad hoc mechanism, and this does allow 
all the code for handling the giving of coins to be put on the appropriate 
GiveShowTopic.

But we have not exhausted what this alternative way of designing this a 
particular mousetrap can do for us, even though the part that remains is frankly not the 
easiest thing to grasp first time round. The trouble with the way we did it before was 
that for each coin Heidi handed over to Sally the shopkeeper (if there were several), 
the game reported "pound coin: " on a new line. We mitigated this a little by trying to 
make it look as if the coins were being counted out: 

 
pound coin: 
pound coin: number 2 
pound coin: number 3 
 
But it really would have been better to do away with that repeating 'pound 

coin:' altogether (especially in a situation where you might want to hand over dozens 
of the things at a time), and simply to have one summary report that says something 
like "You hand over three pound coins." Well, this is what this new way of doing 
things allows us to do. 

Firstly, we define what our own output for each line should be through the call 
to gTranscript.addReport(new GiveCoinReport(obj)). This actually does two things 
for us; first it allows us to define what will reported if only a single coin is handed 
over, and secondly it gives us a class name we have defined ourselves 
(GiveCoinReport) which we'll be able to use to manipulate the final report displayed if 
there's more than one coin handed over. 

For this to work, we need to define the GiveCoinReport class: 
 

class GiveCoinReport: MainCommandReport 
 construct(obj) 
 {

/* remember the coin we accepted */ 
 coinObj = obj; 
 

/* inherit the default handling */ 
 gMessageParams(obj); 
 inherited('You hand over {a obj/him}. '); 
 }

/* my coin object */ 
 coinObj = nil 
;

The construct method – the object constructor – is called when we create a 
new object of the GiveCoinReport class through a call to new GiveCoinReport(obj); the 
new object's coinObj property is set to the obj passed as a parameter, and, more 
interestingly for our purposes, we can customize the message that would be displayed 
each time a coin is handed over, but which will in fact only be displayed if a single 
coin is handed over in the turn. Here we customize it so it will read "You hand over a 
pound coin." (By using the parameter string {a obj/him} rather than the string literal 



161

'pound coin' here we ensure that we'll still get a decent message if someone changes 
the coin name to 'dollar bill' or whatever). 

Then comes the really clever (and complicated part); in order to replace the 
multiple reports of "You hand over a pound coin" that we'd otherwise see, we include 
the following code in the afterActionMain() method: 

 
gTranscript.summarizeAction( 
 {x: x.ofKind(GiveCoinReport)}, 
 {vec: 'You hand over ' 
 + spellInt(vec.length())+' ' + currency.name+'s.\n' }); 
 
This may well look Greek to you (unless you happen to know some Greek), 

but in brief we can at least say what it does: what it does is to remove every instance 
of the "You hand over a pound coin" report that would otherwise be displayed and 
instead prints the aggregate report "You hand over three pound coins." (or however 
many coins it was).  We defined a custom currency property on the GiveShowTopic 
which is updated with the current object being handled every time handleTopic is 
invoked; that means that the currency property will refer to a coin object and we can 
use it to get at the name of the currency (rather than just assuming it's still called 
'pound coin' after you've patriotically renamed it to dollar, euro or whatever). We 
form the plural by simply appending an 's', which will work as well for dollar bills as 
for pound coins; if, however, you've decided that your currency really has to be 
draxmai/ (yes, that's what Greek really looks like) for your game set in ancient 
Athens then you'd need to handle it a bit differently; perhaps by defining a pluralName 
property for your Coin class and using that instead of the name property here). The 
spellInt(vec.length()) part of this string becomes a bit more manageable if one 
breaks it down step by step: the spellInt function takes an integer as an argument and 
returns the equivant spelt-out string (e.g. spellInt(5) returns 'five'). vec is going to be 
a vector (a kind of dynamically resizeable array) containing all the instances of the 
"You hand over a pound coin" message, so the length of the vector, i.e. the number of 
elements it contains, is equivalent to the number of coins handed over. 

Even so, unless you're familiar with the code structure here, the line we're 
examining may still look rather like an arcane magical incantation; well, it's not quite 
that, but it's close to being the next best thing – a method call involving anonymous 
callback functions (if you don't feel any the wiser for being told that, don't worry; this 
is not the most self-evident topic).  Rather than confuse you any further by trying to 
explain exactly what anonymous callback function are, I'll try to offer some 
explanation for what they do here. gTranscript is an object of the CommandTranscript 
class. We are invoking its summarizeAction(cond, report) method. But cond and 
report are not any old common-or-garden parameters of the sort we were all brought 
up or feel at least moderately comfortable with; it turns out that they are functions, 
functions that the summarizeAction method will use in the form cond(cur) and 
report(vec). The first of these defines the condition that must apply to the report lines 
that we want to replace with our single summary report, and the second defines what 
that summary report will look like. 

Our call to gTranscript.SummarizeAction is thus passing two arguments that 
are in effect short form function definitions. The first parameter, {x: 
x.ofKind(GiveCoinReport)}, in effect tells the SummarizeAction method to treat 
cond() as if it were defined as: 

 
cond(x) 



162

{
return x.ofKind(GiveCoinReport); 

}

You may remember that GiveCoinReport was the custom report class we 
defined a little way back, so what we're effectively telling the SummarizeAction with 
this is "look out for those reports of the GiveCoinReport class, they're the ones we 
want you to count up and replace for us." 

Similarly, the second parameter is passed as {vec: 'You hand over ' + 
spellInt(vec.length())+' ' + currency.name+'s.\n' }. This effectively tells 
SummarizeAction to treat report(vec) as if it had been defined as: 

 
report(vec) 
{

return 'You hand over ' + spellInt(vec.length())+' ' +  
 currency.name+'s.\n'; 
}

Since the wizardry performed by SummarizeAction will have gathered up each 
instance of a GiveCoinReport into vec, when it uses this function to print the summary 
report, we'll get the result we want. If you don't understand all this at a first read-
through, don't worry; reach for the nearest bottle of aspirins and read the description 
of anonymous functions and callbacks in the System Manual. If it still doesn't make 
too much sense to you first time round, you're doubtless in good company. But even if 
it takes you a little time to feel reasonably confident that you actually understand it, 
you may hopefully be able to use this example by treating the relevant code as piece 
of boilerplate in which you can slot in what you need for your own purposes; 
hopefully it'll soon become clear enough for you to see where you need to slot in 
what, even if the rest of it still seems less than intuitively obvious. In particular, what 
you need to do is to (a) define a MyReport class (substitute the name you actually 
use!); (b) supply the first argument to gTranscript.summarizeTranscript as {x: 
x.ofKind(MyReport)} and (c) supply the third argument as {vec: 'My description of 
what happens to the '  + spellInt(vec.length())+'  thingies that have been 
processed.\n' }

3. Looking Through the Window 

You'll recall that some time back we fitted a window to the cottage that 
allowed Heidi to see what's inside when she's outside and vice versa. As implemented, 
this is a rather 'passive' window that simply makes whatever's inside the cottage 
visible on the outside (and vice versa). Since a window is something one might 
actively look through, it would be nice if we could implement a look through 
window command, the response to which was a description of what was on the other  
side of the window. In principle, this could be done quite simply by something like 
this: 

 
cottageWindow : SenseConnector, Fixture 'window' 'window' 
 "The cottage window has a freshly painted green frame. The glass  
 has been recently cleaned. " 
 

dobjFor(LookThrough) 
 {

verify() {} 
 check() {} 



163

action() 
 {

local otherLocation; 
 if(gActor.isIn(outsideCottage)) 
 {

otherLocation = insideCottage; 
 "You peer through the window into the neat little room 
 inside the cottage. ";      
 }

else 
 {

otherLocation = outsideCottage; 
 "Looking out through the window you see a path  
 leading into the forest. ";          
 }

gActor.location.listRemoteContents(otherLocation);      
 

}
}
connectorMaterial = glass 

 locationList = [outsideCottage, insideCottage] 
;

The logic of this should be reasonably easy to follow: according to whether 
Heidi is inside or outside the cottage the action routine displays a brief general 
description of what can be seen on the other side of the window and then calls 
listRemoteContents(otherLocation) to list the contents of the other location being 
viewed through the window. We need to use a listRemoteContents routine because 
we want to list the contents of the other location as they appear from the room we're 
in, not as they would appear if Heidi were in the same location as they. This is all 
fairly straightforward apart from one thing: there is no listRemoteContents method in 
the library, so we'll have to provide our own. 

The library does provide a routine that does almost what we want; it's called 
lookAround. This is normally used to provide a full room description, but we can 
restrict it to just listing the objects within a room. At a first approximation our 
listRemoteContents routine could be defined simply as: 

 
listRemoteContents(otherLocation) 
{

lookAround(gActor, LookListSpecials | LookListPortables);    
}

The first parameter of lookAround is the actor performing the command (i.e. 
gActor). The final parameter uses the bitwise or operator ( | ), the details of which are 
a bit beyond this Getting Started Guide; suffice to say that in this context it can be 
used to combine a number of option flags into a single argument. The two flags listed 
here are to list the objects with special descriptions and the portable objects.41 

If you define lookRemoteContents on Thing, and then try compiling and 
running the game (with the revised cottageWindow), you'll find that it almost works as 
we want, but not quite. If you stand outside the cottage and look through its window 
on the first turn, the chair will be reported sitting in the corner of the room as 
expected. But if you subsequently collect the key, unlock the door, then drop the key 
 
41 The other available flags are LookRoomName, which would cause the the room name to be 
displayed, and LookRoomDesc, which would include the room description, neither of which we want 
in this case. For a standard verbose description, you can simply use the value true for this parameter, 
which is equivalent to LookRoomName | LookRoomDesc | LookListPortables | LookListSpecials. 



164

on the ground, you'll find that looking in through the window from the outside lists 
the key as well as the chair, while looking out through the window from the inside 
lists the chair as well as the key. The problem is that lookAround lists everything that's 
visible from the room as well as the contents of the room itself, whereas we want 
something that lists only the contents of the room on the other side of the window. 

Fortunately, TADS 3 provides another Thing method we can use to tweak 
this: adjustLookAroundTable. This is a method that can be used to remove any items 
we don't want included in the room description. By default it simply removes the 
point-of-view object, since an object looking round a location doesn't normally 
include itself in the list of things it sees; but we could use it to remove any object 
that's not in the location we're interested in: 

 
adjustLookAroundTable(tab, pov, actor) 
 {

inherited(tab, pov, actor); 
 if(listLocation_ !=  nil) 
 {

local lst = tab.keysToList(); 
 foreach(local cur in lst) 
 {

if(!cur.isIn(listLocation_)) 
 tab.removeElement(cur); 
 }

}
}

In this method, we first call the inherited behaviour to remove the actor and 
point-of-view object. If listLocation_ (which we'll explain more fully shortly) is not 
nil, we then go on to remove everything that's not in listLocation_ from the table of 
items to be listed. The items that are otherwise about to be listed are in a LookupTable 
passed in the tab parameter. This LookupTable contains a series of pairs of values: a 
key containing the object and a value containing information about the sensing of the 
object. If that all sounds a bit too complicated, don't worry; all we're interested in this 
point is the list of objects contained in the keys. To get at this we use the 
keysToList() method. Then, having obtained the list of objects (in the local variable 
lst) we simply work through them and remove from the table every object that isn't in 
listLocation_.

So far, so good, but what exactly is listLocation_ and how do we set it to 
what we want? Well, listLocation_ is the name we're giving to the location (i.e. 
room) whose contents we want listed. It can't be passed as a parameter of 
adjustLookAroundTable(), since there's no provision for such an extra parameter in 
the library's definition of this method. So to make it available to 
adjustLookAroundTable() we need to define it as a property (which can then be set 
from another method). We add the underscore at the end of the name to highlight the 
fact that it's a property intended for a particular internal use only. 

We next need to arrange for listRemoteContents to set listLocation_ to the 
room whose contents we want listed: 

 
listRemoteContents(otherLocation)   
{

listLocation_ = otherLocation;  
 lookAround(gActor, LookListSpecials | LookListPortables);    
 listLocation_ = nil; 
}



165

Note that we reset listLocation_ to nil after calling lookAroundWithin. This 
is vital, because we only want adjustLookAroundTable to remove items from the list 
of objects to be shown when listRemoteContents is called. At any other time we want 
adjustLookAroundTable to behave as defined in the library – which it will when 
listLocation_ is nil. If listLocation_ were not reset to nil at the end of each call to 
listRemoteContents, then subsequent listings of objects in room descriptions would 
cease to work properly (since all objects not in listLocation_ would be removed 
from the list of objects to be shown). In fact, it's so important that we make sure that 
listLocation_ is always reset to nil at the end of listRemoteContents that there's one 
more step we really ought to take to ensure that it always is – and that's to use try… 
finally. The way we do this is to enclose one or more statements in a block following 
the try keyword, then one or more statements in a block following the finally 
keyword. This will ensure that the statements in the finally block will always be 
executed, even if the game encounters an exception (such as an unanticipated error) in 
the try block. In this case we want to protect the call to lookAroundWithin in a try 
block and place the statement listLocation_ = nil in the finally block, to make it 
absolutely certain that listLocation_ will always be reset to nil at the end of the 
method, come what may. 

The modification to Thing required to achieve all this is thus: 
 

modify Thing 
 listLocation_ = nil 
 listRemoteContents(otherLocation) 
 {

listLocation_ = otherLocation; 
 try 
 {

lookAround(gActor, LookListSpecials | LookListPortables); 
 }

finally 
 {

listLocation_ = nil; 
 }

}

adjustLookAroundTable(tab, pov, actor) 
 {

inherited(tab, pov, actor); 
 if(listLocation_ !=  nil) 
 {

local lst = tab.keysToList(); 
 foreach(local cur in lst) 
 {

if(!cur.isIn(listLocation_)) 
 tab.removeElement(cur); 
 }

}
}

;

If you don't totally understand all the details of this, don't worry at this stage. 
You can just copy the code and check that it works (or use it in your own project), and 
then come back to it when you're more experienced with TADS 3 and it makes more 
sense to you. 

In the meantime, there's one further refinement we may want to add to the 
cottage window. At the moment, the chair inside the cottage advertises its presence as 
soon as Heidi's in outsideCottage, which she is on the very first turn of the game. It 
may be both a bit more subtle and a bit more realistic if she's not allowed to become 



166

aware of what's inside the cottage until she either enters it or explicitly looks in 
through the window.  

The simplest way to achieve this is to have the window start totally opaque 
and only become transparent to sight the first time a look through window command 
is issued. To do this, first change the definition of cottageWindow so that instead of 

 
connectorMaterial = glass 
 
You have 
 
connectorMaterial = adventium 
 
Then add the statement 
 
connectorMaterial = glass; 
 
At the start of the action routine of dobjFor(LookThrough), say, immediately 

after local otherLocation;. Now, the chair will not be listed until the player issues 
the command look through window.

You might be tempted to add a further statement connectorMaterial = 
adventium; at the end of the action routine, so that the contents of the room inside the 
cottage are visible only when the window is being explicitly looked through. The 
problem with this is that once the player has seen the chair inside the cottage, he or 
she ought to be able to refer to it (e.g. with x chair), but making the window opaque 
again (adventium is a material that's opaque to all senses) will prevent that (x chair 
would result in the message 'you see no chair here', even though you'd just seen it 
through the window). In any case, once Heidi has once looked through the window 
it's not so unreasonable that she should continue to be aware of what lies on the other 
side of it. 

 
4. Easing Testing and Debugging 

A section headed 'testing and debugging' is always in danger of provoking a 
yawn from the reader of programming guides, so be assured that I shall be offering no 
general exhortations to good testing practice or complicated descriptions of debugging 
techniques. Instead I shall simply assume that you recognize at least some need to test 
and debug your creations and might be interested in one or tools that can make the 
process a bit less painful. 

Even with a game as brief as The Further Adventures of Heidi, it can become 
quite tedious to have to keep retyping a whole sequence of commands to reach the 
point of the game at which you want to put something to the test (e.g., an alternative 
implementation of the way the chair object lets Heidi climb the tree). In a much larger 
game the prospect of having to do this would be simply horrendous. TADS 3 has a 
built-in mechanism for easing this pain: you can record a series of commands in a 
command (cmd) file and play them back on subsequent occasions. So, for example, if 
you wanted to test alternative chair implementations you might start up the game, and 
as the very first command type: record. A dialogue box will then appear asking you 
to supply a file name (you might call it 'chairtest'). You then carrying on issuing 
commands until to the point at which you want to make repeated tests, at which point 
you enter the command record off.



167

Then, on subsequent occasions, you can use the commands replay, replay 
quiet or replay nonstop to replay your command file to bring you back to the same 
point in the game. The first form of the command shows all the responses to each 
command as its read from the file, pausing to make you hit the space bar with every 
page-full of output; replay nonstop, as you might expect, does much the same thing, 
but without waiting for any keypresses (you can always scroll back the output 
window to read further back if you want to). Finally, replay quiet plays back the 
command file with no output to the screen at all; normally you'll want to issue a look 
command after a replay quiet command to check where it's brought you to. As with 
the record command, all three forms of the replay command provide you with a 
dialogue box to select the file you want to play back (although this can also be 
specified on the command line). There is also an analogous script which can be used 
to copy the entire output (player commands and game responses) to a log file; to stop 
outputting to the file you use the command script off. You might use this after 
making changes to a game to check that there were no unexpected changes to its 
transcript (perhaps by comparing before and after versions of the log file with a file 
comparison utility). 

Although these are all helpful, it can also be useful (for testing purposes) to be 
able to teleport around the map or cause useful objects to teleport into the player 
character's hands from anywhere in the game world. Inform provides gonear and 
purloin verbs for just this purpose, but no such verbs exist in the TADS 3 library.42 It 
is perfectly possible to implement your own versions, though; the main complication 
being that it is far from immediately obvious how to redefine the normal scoping rules 
to allow a command to refer to and act on an object that would normally not be 
considered in scope. 

The quick and dirty way round this would be to override the objInScope 
method of the purloin and gonear actions: 

 
DefineTAction(Gonear) 
 objInScope(obj) { return true; } 
;

This works perfectly well, but it's theoretically less than ideal; we don't 
actually want every object to be in scope for a purloin or gonear command, since it 
makes no sense to use these verbs with (say) Topics, ActorStates or TopicEntrys. A 
theoretically more rigorous approach, which we'll look at just to see how it's done, is 
to build our own list of objects we want considered in scope for these commands, and 
then use that: 

 
#ifdef __DEBUG 
 
/* The purpose of the everything object is to contain a list of all usable 
game objects 
 which can be used as a list of objects in scope for certain debugging 
verb. 
 Everything caches a list of all relevant objects the first time its lst 
method is called. */ 
 
everything : object 
 /* lst_ will contain the list of all relevant objects. We initialize it to  
 nil to show that the list is yet to be cached */ 
 
42 Although the library extension ncDebugActions.t, which you can download from the IF-Archive, 
defines equivalent actions. 



168

lst_ = nil 
 

/* The lst_ method checks whether the list of objects has been cached yet.  
 If so, it simply returns it; if not, it calls initLst to build it first  
 (and then returns it). */  
 

lst() 
 {

if (lst_ == nil) 
 initLst(); 
 return lst_; 
 }

/* initLst loops through every game object and adds it to lst_, unless  
 it's a Topic, which we don't want included even in this universal scope.  
 */ 
 

initLst() 
 {

lst_ = new Vector(50); 
 local obj = firstObj(); 
 while (obj != nil) 
 {

if(obj.ofKind(Thing)) 
 lst_.append(obj); 
 obj = nextObj(obj); 
 }

lst_ = lst_.toList(); 
 }
;

There should not be a great deal that requires explanation. We head the section 
with the preprocessor directive #ifdef __DEBUG (note the double underscore before 
DEBUG) to ensure that our debugging verbs are compiled only into the debugging 
version of the game we use for testing, not in the final release version. The initList 
method uses a vector rather than a list since this is slightly faster in execution; the 
routine converts lst_ to a list right at the end. The built-in functions firstObj() and 
nextObj() are used to iterate through every object we have defined in the game, and 
we use a test to include only objects descended from Thing (i.e. programming objects 
that represent physical game objects). Since all the objects are defined in the game 
code there is no need to build this list more than once, so the code builds the list only 
the first time the lst() method is called; otherwise it simply returns the lst_ 
previously constructed. A game that used dynamically created objects might have to 
use a slightly different approach. 

Defining the purloin verb is then only slightly more complex than defining 
another new verb: 

 
DefineTAction(Purloin) 
 cacheScopeList() 
 {

scope_ = everything.lst();          
 }
;

VerbRule(Purloin) 
 ('purloin'|'pn') dobjList  
 :PurloinAction 
 verbPhrase = 'purloin/purloining (what)' 
;

modify Thing 



169

dobjFor(Purloin) 
 {

verify() 
 {

if(isHeldBy(gActor)) illogicalNow('{You/he} {is} already holding it. ');  
 }

check() {} 
 action 
 {

mainReport('{The/he dobj} pops into your hands.\n '); 
 moveInto(gActor); 
 }

}
;

modify Fixture 
 dobjFor(Purloin) 
 {

verify {illogical ('That is not something you can purloin - it is fixed  
 in place.'); } 
 }
;

modify Immovable 
 dobjFor(Purloin) 
 {

check() 
 {

"You can't take {the/him dobj}. "; 
 exit; 
 }

}
;

This definition assumes that we want to be able to purloin the kinds of things 
that you could normally expect to pick up and carry around, but not things that are 
fixed in place. If the behaviour you want is different from this, you can define 
dobjFor(Purloin) routines accordingly. 

The definition for gonear is similar: 
 

DefineTAction(Gonear) 
 cacheScopeList() 
 {

scope_ = everything.lst();          
 }
;

VerbRule(Gonear) 
 ('gonear'|'gn'|'go' 'near') singleDobj  
 :GonearAction 
 verbPhrase = 'gonear/going near (what)' 
;

modify Thing 
 dobjFor(Gonear) 
 {

verify() {} 
 check() {} 
 action() 
 {

local obj = getOutermostRoom(); 
 

if(obj != nil) 
 {

"{You/he} {are} miraculously transported...</p>"; 



170

replaceAction(TravelVia, obj); 
 }

else 
 "{You/he} can't go there. "; 
 }

}
;

modify Decoration 
 dobjFor(Gonear)  
 {

verify() {} 
 check() {} 
 action() {inherited;} 
 }
;

modify Distant 
 dobjFor(Gonear)  
 {

verify() {} 
 check() {} 
 action() {inherited;} 
 }
;

What the gonear verb does is to transport the player character to the room in 
which the direct object of the gonear command is located (e.g. gonear burner would 
transport you the fire clearing). Using getOutermostRoom in the action method of 
dobjFor(Gonear) on Thing ensures that you are transported to the outermost container 
(the room), not the immediate container, which might be some other object. For 
example, if you enter the command gonear torch you'll end up inside the shed, not 
the cupboard (assuming the torch hasn't moved). If you added vocabulary words to 
particular rooms, you could also use the gonear verb with the room name to go 
straight to a room. We add definitions on Decoration and Distant since it makes 
perfectly good sense to gonear objects of these classes, but the library definition of 
these classes, which makes use of dobjFor(Default), would otherwise annul the 
definition of dobjFor(Gonear) we put on Thing.

There may be other classes for which you'd want to add special handling for 
these verbs, but one in particular we need to consider is MultiLoc. Allowing a 
MultiLoc to be purloined might create havoc with your game world, while attempting 
to gonear a MultiLoc has no defined outcome; we thus need to define special handling 
to deal with these cases: 

 
modify MultiLoc 
 dobjFor(Gonear) 
 {

verify() { illogical('{You/he} cannot gonear {the dobj/him}, since it 
 exists in more than one location. '); } 

 }
dobjFor(Purloin) 

 {
verify() { illogical('{You/he} cannot purloin {the dobj/him}, since it  

exists in more than one location. '); } 
 }
;

#endif 
 



171

We could simply have excluded MultiLocs from the scope list built by 
everything.initLst(), but this would result in slightly odd messages of the sort "You 
see no stream here" even when the stream is patently present in the location at which 
you issue an ill-advised purloin stream or gonear stream command. Allowing 
MultiLocs to be in scope and then providing a meaningful message explaining why 
the action is forbidden seems just that much neater. To be on the safe side you could 
add a similar modfication for MultiInstance (to trap gonear trees and purloin trees), 
but you'll find the game traps these for other reasons anyway. 

The #endif preprocessor directive at the end balances the #ifdef __DEBUG at 
the start, thereby enclosing the entire block of code we've just defined to implement 
our two new testing and debugging verbs. 

Note that have made this more complicated than strictly necessary; if you want 
to create this kind of thing for your own use you can dispense with the everything 
object and just define objInScope(obj) { return true; } on the TAction classes of 
your special debugging verbs; we have gone the longer route here to show how to 
build a custom scope list for cases where the blanket "put everything in scope" 
approach may not be what you want.  

 
5. Where to go from here 

We have only scratched the surface of the TADS 3 library (and the TADS 3 
language), but hopefully enough has been covered here to get you started. The next 
step is for you to experiment on your own; you could either expand the Further 
Adventures of Heidi with further features of your own devising, or else start your own 
(and probably rather more interesting) test project. I shan't make any concrete 
suggestions what else to add to the Heidi game, since it'll be much more interesting 
for to implement your own ideas; but I'll pose a few questions your extension of the 
game might like to answer: whose cottage is it that Heidi starts by? Why were the 
boots buried in the cave? Could Sally the shopkeeper be the object of Joe's affections? 
Is the stream at the bottom of the garden the same as the stream Heidi has to cross to 
reach the meadow, and does that suggest any other uses for the boat? If Heidi could 
walk into the village from the jetty, what might she find there? Where else could she 
reach from the meadow? Why was the key lying there? 

As an alternative, you might like to turn to the Technical Manual and read the 
article on Designing Your Game. This discusses the design of a game based at an 
airport, and shows how to implement the first few steps; as an exercise you could try 
implementing the rest of the game. 

If you start following your own inventiveness, either by expanding the Heidi 
game or by writing your own, sooner or later (probably the former) you'll come up 
against something that hasn't been covered in this Getting Started Guide, or else come 
up against something that you can manage by some convoluted means but which 
makes you think, "surely TADS 3 provides a better way of going about it than this?" 
Given the richness both of the language and the library it's quite possible that it does, 
the problem is to discover where and how. 

There are several other places you can look. One is the TADS 3 Tour Guide 
which, like the current Getting Started guide, takes you through the development of a 
complete game. The Tour Guide, however, is considerably longer, covers much more 
of the library, and tries to work through all the main classes in the library in a 
reasonably systematic fashion. It should prove an excellent resource for extending and 



172

deepening your knowledge of TADS 3 (but then I would say, since I wrote it!). The 
TADS 3 Tour Guide should have come with the documentation included with the 
TADS Author's Kit, but it can be found on line at (and various formats downloaded 
from) http://users.ox.ac.uk/~manc0049/TADSGuide/intro.htm. It is also available 
from the IF-Archive. 

Another place to look is is the TADS 3 Technical Manual, which again should 
be included with the documentation that comes with the TADS 3 author's kit, or 
should otherwise be downloadable from http://www.tads.org. This contains a variety 
of sections, some of which cover in greater detail material introduced in this guide, 
and some of which which take you into new areas (such as writing a TADS 3 game in 
the past tense).  A third resource is the TADS 3 System Manual, also included with 
the standard documentation (or downloadable from http://www.tads.org). This may 
not be something you want to read from cover to cover in one sitting, but it is 
something you will want to refer to again and again, and you will need to familiarize 
yourself with much of its contents sooner or later. The thing to do first time round is 
probably to try to read through all the bits that look interesting and informative, and to 
skip anything that seems boring and obscure unless and until you really need it. 

Yet another resource is the 'TADS 3 Version History' (the link near the bottom 
of the HTML page when you select the Help option from Workbench), and in 
particular the Recent Library Changes list, which can be a mine of information on 
TADS 3 features. 

But no set of documentation is going to tell you everything you will eventually 
need to know about the TADS 3 library. Sooner or later there will be no subsitute for 
looking at the library code to see how various classes and functions are implemented. 
Fortunately, the library code is well commented to guide you through understanding 
how things work. Even more fortunately, the documentation that comes with the 
TADS 3 author's kit comes with a set of linked HTML files (The TADS 3 Library 
Reference Manual) that make finding your way round the library source files much 
easier than it otherwise would be. You will find this an invaluable reference resource 
whenever you're programming in TADS 3. 

 
If you've followed this Getting Started Guide through to this point, you will 

not yet have created the most exciting work of Interactive Fiction in the known 
universe, but hopefully you will have been helped over the initial hump to start 
getting to grips with TADS 3. In any case, gaining mastery of TADS 3 isn't a matter 
of commiting every feature of the TADS 3 language and library to memory (few 
people could do that), but of learning enough to be able to carry out common tasks 
with ease, and to know where to look to find out how to do the rest with the minimum 
of difficulty. This Getting Started Guide should have set you well on the way down 
this path, and the remaining items in this set of documentation should carry you the 
rest of the way. From now on, the rest is up to you.  

http://www.tads.org/
http://www.tads.org/
http://users.ox.ac.uk/~manc0049/TADSGuide/intro.htm


173

APPENDIX A – Action Message Properties 
 

d = dObjFor  i = iObjFor   A=Action  C=Check   V=Verify 
 
AskAbout Thing dV  notAddressableMsg 
AskFor  Thing dV  notAddressableMsg 
AttachTo Thing dV  cannotAttachMsg 
 Thing iV  cannotAttachToMsg 
Attack  Thing dA  uselessToAttackMsg 
AttackWith Thing dA  uselessToAttackMsg 
 Thing iV  notAWeaponMsg 
Board  Thing dV  cannotBoardMsg 
Break  Thing dV  shouldNotBreakMsg 
BurnWith Thing dV  cannotBurnMsg 
 Thing iV  cannotBurnWithMsg 
Clean  Thing dV  cannotCleanMsg 
CleanWith Thing dV  cannotCleanMsg 
 Thing iV  cannotCleanWithMsg 
Climb  Thing dV  cannotClimbMsg 
ClimbDown Thing dV  cannotClimbMsg 
ClimbUp Thing dV  cannotClimbMsg 
Close  Thing dV  cannotCloseMsg 
Consult  Thing dV  cannotConsultMsg 
ConsultAbout Thing dV  cannotConsultMsg 
CutWith Thing dA  cutNoEffectMsg 
 Thing iV  cannotCutWithMsg 
Default  Decoration diV  notImportantMsg 
 Distant diV  tooDistantMsg(self) 

Intangible diV  notWithIntangibleMsg 
 Unthing diV  notHereMsg 
Detach  Thing dV  cannotDetachMsg 
DetachFrom Thing dV  cannotDetachMsg 
 Thing iV  cannotDetachFromMsg 
DigWith Thing dV  cannotDigMsg 
 Thing iV  cannotDigWithMsg 
Drink  Thing dV  cannotDrinkMsg 
Drop  Immovable dA  cannotMoveMsg 
Doff  Thing dV  notDoffableMsg 
Eat  Thing dV  cannotEatMsg 
Enter  Thing dV  cannotEnterMsg 
 
EnterOn Thing dV  cannotEnterOnMsg 
Extinguish Thing dV  cannotExtinguishMsg 
Fasten  Thing dV  cannotFastenMsg 
FastenTo Thing dV  cannotFastenMsg 
 Thing iV  cannotFastenToMsg 
Flip  Thing dV  cannotFlipMsg 
Feel  Thing dA  feelDesc "" 
Follow  Thing dV  notFollowableMsg 
GetOffOf Thing dV  cannotGetOffOfMsg 
GetOutOf Thing dV  cannotUnboardMsg 
GoThrough Thing dV  cannotGoThroughMsg 



174

GiveTo  Thing iV  notInterestedMsg 
JumpOff Thing dV  cannotJumpOffMsg 
JumpOver Thing dV  cannotJumpOverMsg 
Kiss  Thing dV  cannotKissMsg 
 Actor dA  cannotKissActorMsg 
LieOn  Thing dV  cannotLieOnMsg 
Listen  Thing dA  (soundDesc "" ) 
Light  Thing   asDobjFor(Burn) 
Lock  Thing dV  cannotLockMsg 
 IndirectLockable dC cannotLockMsg 
LockWith Thing dV  cannotLockMsg 
 Thing iV  cannotLockWithMsg 
 Lockable dV  noKeyNeededMsg 
 IndirectLockable dC cannotLockMsg 
LookBehind Thing dA  nothingBehindMsg 
LookIn   Thing dA   lookInDesc "" 
LookThrough Thing dA  nothingThroughMsg 
LookUnder  Thing dA  nothingUnderMsg 
Move  Thing dA  moveNoEffectMsg 
 Fixture dV  cannotMoveMsg 
 Immovable dA  cannotMoveMsg 
MoveTo  Thing dA  moveToNoEffectMsg 
 Fixture dV  cannotMoveMsg 
 Immovable dC  cannotMoveMsg 
MoveWith Thing dA  moveNoEffectMsg 
 Thing iV  cannotMoveWithMsg 
 Immovable dC  cannotMoveMsg 
 Fixture dV  cannotMoveMsg 
Open  Thing dV  cannotOpenMsg 
PlugIn  Thing dV  cannotPlugInMsg 
PlugInto Thing dV  cannotPlugInMsg 
 Thing iV  cannotPlugInToMsg 
Pour  Thing dV  cannotPourMsg 
PourInto Thing dV  cannotPourMsg 
 Thing iV  cannotPourIntoMsg 
PourOnto Thing dV  cannotPourMsg 
 Thing iV  cannotPourOntoMsg 
Pull  Thing dA  pullNoEffectMsg 
 Fixture dV  cannotMoveMsg 
 Immovable dA  cannotMoveMsg 
Push  Thing dA  pushNoEffectMsg 
 Fixture dV  cannotMoveMsg 
 Immovable dA  cannotMoveMsg 
PushTravel Thing dV  cannotPushTravelMsg 
 Fixture dV  cannotMoveMsg 
 Immovable dA  cannotMoveMsg 
PutBehind Thing iV  cannotPutBehindMsg 
 Fixture dV  cannotPutMsg 
 Component dV  cannotPutComponentMsg(location) 
 Immovable dC  cannotPutMsg 
PutIn  Thing iV  notAContainerMsg 
 Fixture dV  cannotPutMsg 
 Component dV  cannotPutComponentMsg(location) 
 Immovable dC  cannotPutMsg 
PutOn  Thing iV  notASurfaceMsg 



175

Fixture dV  cannotPutMsg 
 Component dV  cannotPutComponentMsg(location) 
 Immovable dC  cannotPutMsg 
PutUnder Thing iV  cannotPutUnderMsg 
 Fixture dV  cannotPutMsg 
 Component dV  cannotPutComponentMsg(location) 
 Immovable dC  cannotPutMsg 
Screw  Thing dV  cannotScrewMsg 
ScrewWith Thing dV  cannotScrewMsg 
 Thing iV  cannotScrewWithMsg 
Search  Thing dA  as LookIn 
SitOn  Thing dV  cannotSitOnMsg 
ShowTo Thing iV  notInterestedMsg 
Smell  Thing dA  (smellDesc "" ) 
StandOn Thing dV  cannotStandOnMsg 
Switch  Thing dV  cannotSwitchMsg 
Take  Fixture dV  cannotTakeMsg 
 Component dV  cannotTakeComponentMsg(location) 
 Immovable dA  cannotTakeMsg 
TakeFrom Fixture dV  cannotTakeMsg 
 Component dV  cannotTakeComponentMsg(location) 
 Immovable dC  cannotTakeMsg 
TellAbout Thing dV  notAddressableMsg 
TalkTo  Thing dV  notAddressableMsg 
Taste  Thing dA  tasteDesc "" 
Turn  Thing dV  cannotTurnMsg 
 Immovable dA  cannotMoveMsg 
TurnOff Thing dV  cannotTurnOffMsg 
TurnOn  Thing dV  cannotTurnOnMsg 
TurnTo  Thing dV  cannotTurnMsg 
TurnWith Thing dV  cannotTurnMsg 
 Thing iV  cannotTurnWithMsg 
ThrowDir Thing dA  dontThrowDirMsg or 

ShouldNotThrowAtFloorMsg 
ThrowTo Thing dV  willNotCatchMsg(self) 
TypeLiteralOn  Thing dV            cannotTypeOnMsg 
Unfasten           Thing dV             cannotUnfastenMsg 
 Thing iV                      cannotUnfastenFromMsg 
UnPlug              Thing dV          cannotUnplugMsg 
UnPlugFrom     Thing dV          cannotUnplugMsg 
 Thing iV                   cannotUnplugFromMsg 
Unlock              Thing dV          cannotUnlockMsg 
 IndirectLockable dC       cannotUnlockMsg 
UnlockWith      Thing dV          cannotUnlockMsg 
 Thing iV                  cannotUnlockWithMsg 
 Lockable dV                   noKeyNeededMsg 

IndirectLockable dC      cannotUnlockMsg 
Unscrew           Thing dV            cannotUnscrewMsg 
UnscrewWith   Thing dV            cannotUnscrewMsg 
 Thing iV             cannotUnscrewMsg 
Wear  Thing dV  notWearableMsg 
 



176

INDEX 
 

<
<.reveal>..................................................... 106 
A
Achievement............................................... 128 
action ............................................................ 75 
actionAfterMain (method).......................... 159 
Actor............................................................. 91 
actorAction ................................................... 85 
ActorStates ................................................... 91 

ConversationReadyState.......................... 95 
InConversationState................................. 95 

addReport ................................................... 160 
addToScore (function).................................. 62 
addToScoreOnce (method)......................... 128 
adjustLookAroundTable............................. 164 
adventium ................................................... 166 
afterAction............................................ 83, 121 
afterTravel(traveler, connector) method..... 121 
Aggregating iterated commands................. 159 
AltTopic ..................................................... 102 
Anonymous objects ................................ 51, 56 
asExit ............................................................ 58 
AskAboutForTopic............................. 142, 144 
askForIobj................................................... 115 
AskForTopic............................................... 118 
AskTellTopic.............................................. 102 
AskTopic ...................................................... 98 
assignment statements .................................. 14 
atmosphereStrings ...................................... 150 
attentionSpan .............................................. 136 
B
beforeAction................................................. 83 
bottomRoom (property)................................ 68 
break (statement) .......................................... 21 
BuyTopic (custom class) ............................ 144 
ByeTopic ...................................................... 96 
C
cacheScopeList (method) ........................... 168 
callAfterActionMain (method) ................... 159 
callback functions....................................... 161 
cannotTakeMsg ............................................ 79 
canTalkTo................................................... 155 
canTravelerPass (method) ............................ 60 
Chair ............................................................. 59 
check() .................................................... 65, 74 
cmdDict.addWord(obj, word, &wordtype) 104 
CommandTranscript ................................... 161 
compiling........................................................ 9 
ComplexContainer...................................... 126 
Component ................................................. 133 
connectorMaterial....................................... 108 
connectorMaterial (property)...................... 134 

Connectors ....................................................55 
DistanceConnector .................................111 
FakeConnector .........................................56 
NoTravelMessage ....................................57 
OneWayRoomConnector .........................59 
RoomConnector .............................110, 114 
SenseConnector..............................111, 133 
TravelMessage .........................................60 

Container.................................................63, 64 
Conversation nodes.......................................99 
ConversationReadyState ...............................95 
ConvNode ...........................................100, 121 
convnode tag ...............................................100 
convstay tag ................................................101 
CustomRoomLister .....................................110 
customVerbs ...............................................158 
D
Daemons .....................................................135 
dangerous ......................................................73 
DarkRoom...................................................123 
Decoration.............................................51, 132 
DefaultAskTellTopic ............................98, 100 
DefaultGiveShowTopic ................................93 
DefineTAction ............................................112 
Defining new commands ............................112 
delegated .......................................................36 
desc ...............................................................47 
destination (property)....................................59 
destName ....................................................153 
discovered .....................................................67 
Dispensable.................................................139 
Dispenser ....................................................139 
DistanceConnector ......................................111 
Distant.........................................................131 
dobjFor....................................................57, 69 
dobjFor(Default) ...........................................89 
dobjMsg ........................................................81 
Door ............................................................107 
doScript (method) .......................................150 
do-while ........................................................26 
E
Enterable .......................................58, 125, 129 
enteringRoom (method) ................................63 
EventList.....................................................105 
eventList (property) ..............................93, 150 
exit ................................................................65 
explainTravelBarrier (method) ...............60, 61 
F
failCheck.......................................................74 
FakeConnector ..............................................56 
finishGameMsg() ..........................................93 
FinishType ....................................................94 
firstObj (function) .......................................168 



177

Fixture .................................................... 41, 51 
Flashlight .................................................... 127 
Floor ........................................................... 118 
FloorlessRoom.............................................. 68 
Food............................................................ 139 
for loop ......................................................... 27 
foreach .......................................................... 28 
functions ....................................................... 18 
Fuses................................................... 135, 142 
G
gActionIs .................................................... 121 
gameMain................................................... 152 
gDobj ............................................................ 67 
getActionMessageObj .................................. 79 
getActor() ................................................... 121 
getFacets..................................................... 156 
getTopicText ................................................ 98 
gIobj ............................................................. 67 
GiveShowTopic............................................ 92 
GiveTopic..................................................... 92 
globalParamName ........................................ 92 
gonear ......................................................... 167 
Greeting protocol.......................................... 95 
gReveal() .................................................... 106 
gRevealed() ................................................ 106 
gSetKnown ......................................... 103, 138 
gTranscript.addReport ................................ 160 
H
handleTopic (method) ................................ 144 
Heavy ......................................................... 129 
HelloTopic.................................................... 96 
Hidden .................................................... 67, 68 
I
IAction........................................................ 112 
Identifiers...................................................... 24 
if... then......................................................... 19 
illogical......................................................... 71 
illogicalAlready ............................................ 71 
illogicalNow ................................................. 71 
ImpByeTopic................................................ 96 
implicit actions ............................................. 76 
InConversationState ..................................... 95 
indexOf (method) ....................................... 125 
Inheritance.................................................... 30 
inherited................................................ 31, 133 
initiateConversation............................ 120, 137 
initSpecialDesc (property)............................ 59 
inRoomName.............................................. 109 
instanceObject (property) ........................... 157 
Intangible............................................ 111, 134 
iobjFor .................................................... 67, 69 
iobjMsg......................................................... 82 
isActive (property)...................................... 102 
isConversational ......................................... 120 
isHer ............................................................. 92 
isHim ............................................................ 92 
isInitState (property)..................................... 96 

isKnown (property).....................................138 
isPlural (property) .......................................124 
ItemizingCollectiveGroup...........................139 
K
Key..............................................................108 
keywordList (property) ...............................100 
L
lexicalParent..................................................61 
ListGroupParen ...........................................139 
listRemoteContents .....................................163 
lists ................................................................22 
local...............................................................16 
Local Variables .............................................24 
location....................................................49, 50 
locationList property...................................111 
Lockable......................................................107 
LockableWithKey.......................................107 
logical ...........................................................72 
logical rank .................................................158 
logicalRank ...................................................72 
lookAroundWithin ..............................163, 164 
LookupTable...............................................164 
loops..............................................................26 
M
macro ............................................................54 
Macros ..........................................................57 
masterObject (property) ..............................107 
matchNameCommon (method)...................125 
matchObj (property)..............................92, 145 
matchScore (TopicEntry property) .............143 
matchTopic (TopicEntry method)...............143 
maxScore (property of gameMain) .............152 
maybeRemapTo ............................................78 
Message ........................................................79 
methods...................................................14, 17 
Mimesis.........................................................51 
mix-in classes..............................................108 
modify...........................................................33 
money (generalized handling).....................146 
moved (property) ..........................................65 
moveInto (method)........................................65 
moveIntoForTravel (method)......................135 
MultiInstance ..............................................157 
MultiLoc ............................. 108, 111, 157, 170 
Multiple Inheritance......................................32 
multiple source files......................................10 
N
name..............................................................47 
Nested objects .........................................22, 56 
nestedAction .................................................67 
NestedRoom..................................................59 
nextObj (function).......................................168 
nextState (property) ....................................120 
Noise ...........................................................152 
nonObvious...................................................73 
notAContainerMsg........................................83 



178

notASurfaceMsg........................................... 80 
notifyRemove (method).............................. 128 
NoTopic...................................................... 121 
NoTravelMessage......................................... 57 
NPC (Non-Player Character)........................ 89 
npcActionMessages...................................... 80 
npcContinueList ......................................... 121 
npcContinueMsg ........................................ 121 
npcGreetingList .......................................... 121 
npcGreetingMsg ......................................... 121 
O
objects........................................................... 13 
objHeld ......................................................... 76 
objInScope (method) .................................. 171 
objVisible ............................................. 76, 116 
Odor............................................................ 151 
OneWayRoomConnector ............................. 59 
OpenableContainer ..................................... 127 
OutdoorRoom............................................... 46 
OutOfReach.................................................. 62 
P
paper (as connectorMaterial) ...................... 134 
Parameter substitution .................................. 92 
Person ........................................................... 91 
playerActionMessages.................................. 80 
preCond() ..................................................... 76 
PreCondition................................................. 76 
preconditions .............................................. 116 
PresentLater.................................................. 65 
Project file .................................................... 11 
properties ...................................................... 14 
propertysets .................................................. 69 
purloin ........................................................ 167 
R
rand() function.............................................. 98 
RandomEventList ......................................... 93 
Readable ..................................................... 133 
readDesc (property) .................................... 133 
record.......................................................... 166 
remap............................................................ 77 
remapTo ................................................. 57, 77 
remoteInitSpecialDesc........................ 109, 111 
remoteRoomContentsLister........................ 109 
removeEvent  (daemon method)................. 135 
replace .......................................................... 33 
replaceAction................................................ 67 
replay.......................................................... 167 
reportFailure ................................................. 74 
return (statement) ......................................... 18 
Room ............................................................ 47 
Room parts ................................................. 117 
roomAfterAction .......................................... 85 
roomBeforeAction........................................ 85 
RoomConnector.................................. 110, 114 
roomParts (property) .................................. 118 

S
scope - changing .........................................167 
scope (of variables) .......................................16 
seen (property) ..............................................63 
self...........................................................17, 65 
semicolon (use of).........................................14 
SenseConnector ..........................108, 111, 133 
SenseDaemon..............................................154 
ShowTopic ....................................................92 
ShuffledEventList ...................................93, 98 
ShuffledList ..................................................22 
SoundEvent .................................................133 
SoundObserver............................................133 
specialDesc (property) ....................96, 97, 130 
SpecialTopic .................................................99 
spellInt (function)................................145, 161 
stateDesc (property) ......................................96 
StopEventList................................................96 
subLocation.................................................127 
SuggestedAskTopic ....................................105 
summarizeAction (method).........................161 
Supporter.......................................................63 
Surface ....................................................41, 64 
switch statement............................................20 
T
TAction .......................................................112 
TADS 3 Tour Guide ....................................171 
takeTurn (ActorState method) ....................136 
templates .......................................................48 
ternary operator.............................................97 
Thing (class) ...........................................49, 51 
TIAction......................................................112 
Tokenizer.tokenize......................................104 
Topic ...................................................106, 138 
TopicEntries..................................................91 

AltTopic .................................................102 
AskForTopic ..........................................118 
AskTellTopic .........................................102 
AskTopic..................................................98 
DefaultAskTellTopic........................98, 100 
DefaultGiveShowTopic............................93 
GiveShowTopic........................................92 
GiveTopic.................................................92 
NoTopic .................................................121 
ShowTopic ...............................................92 
SpecialTopic.............................................99 
YesTopic ................................................121 

topicResponse (as a method).........................94 
topicResponse (property) ..............................92 
touchObj......................................................116 
travelDesc (connector property)....................56 
TravelMessage ..............................................60 
TravelVia ......................................................57 
triggerEvent (method) .................................133 
try… finally.................................................165 
U
useSpecialDesc (method)............................130 



179

V
Vaporous ...................................................... 89 
variables ....................................................... 16 
Vehicle ....................................................... 129 
VerbRule .................................................... 112 
verify().......................................................... 70 
vocabWords.................................. 49, 103, 125 

W
Weak Tokens ..............................................125 
Wearable .............................................113, 114 
Y
YesTopic.....................................................121 

 


	CONTENTS
	Preface
	Eric Eve

	Chapter One - Introduction
	1. General Introduction
	2. Creating your First TADS 3 Project
	a. Installing the compiler
	b. Creating the new project
	i) Creating a project with Workbench
	ii) Creating a project manually

	c. Compiling your project
	d. Running your game
	e. Adding multiple source files to the project
	f. The project file's contents explained

	3. Programming Prolegomena
	a. Overview of Basic Concepts
	b. Objects
	c. Assignment Statements
	d. Referring to Methods and Properties
	e. Functions and Methods
	f. Conditions -  If Statements
	g. The Switch Statement
	h. Properties Containing Objects and Lists
	i. Nested Objects

	4. Further Programming Concepts and Constructs
	a. Comments, Identifiers and Scope
	i) Comments
	ii) Identifiers
	iii) Scope of Identifiers and Local Variables

	b. Loops
	i) While
	ii) Do-While
	iii) For
	iv) Foreach
	v) Break and Continue
	vi) Alternatives to Loops

	c. Inheritance
	i) Inherited
	ii) Multiple Inheritance
	iii) Replace and Modify
	iv) Delegated

	d. Afterword


	Chapter Two - A Sample Game
	1. A Very Simple Game
	2. Adding Items to the Game
	3. Making the Items Do Something

	Chapter Three - Starting Out Again - Defining Rooms and Objects
	1. Starting a New Game
	2. Defining our first Room
	3. Adding an Object to the Room
	4. Tying Up Some Loose Strings

	Chapter Four - Moving Around
	1. Basic Travel
	2. Climbing the Tree – Remapping Behaviour
	3. Making Life More Problematic
	4. Rewarding the Effort
	5. Controlling the Action
	a. Verify()
	b. Check()
	c. Action()
	d. PreCond()
	e. Remap()
	f. Messages
	g. Other Responses to Actions

	6. Summary and Recapitulation
	a. Connectors
	b. Rooms
	c. Object Types & Properties
	d. Dealing with Actions
	e. Miscellaneous


	Chapter Five - Character Building
	1. Setting the Scene
	2. A Basic Burner
	3. Ending the Game
	4. The Art of Conversation
	5. What's in a Name?

	Chapter Six - Expanding the Horizons
	1. Doors and Windows
	2. Crossing the Stream
	3. Burying the Boots
	4. Calling a Spade a Spade
	5. Quick Summary

	Chapter Seven - Pushing the Boat Out
	1. Let there be Light
	2. Row My Boat
	3. Going Shopping
	4. Handling Cash Transactions
	a. Providing Goods and Money
	b. Making the Sale
	c. Generalizing Financial Transactions

	5. Quick Summary

	Chapter Eight - Finishing Off
	1. Filling in Some Gaps
	a. Atmosphere Strings
	b. Sensory Emanations
	c. Settling the Score
	d. Destination Names
	e. Stopping Sally's Misbehaviour
	f. Finishing the Boat
	g. Other Suggestions – including an MultiInstance
	Deep in the Forest


	2. Counting the Cash
	3. Looking Through the Window
	4. Easing Testing and Debugging
	5. Where to go from here

	APPENDIX A – Action Message Properties
	INDEX

